Color profile: Generic CMYK printer profile

Composite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23
Blind Folio 1

CHAPTER

JavaScript Programming
Practices

recommended practices for and salient issues regarding JavaScript in the “real world.”

Our focus is on errors and debugging as well as on writing robust JavaScript that
utilizes defensive programming techniques. We also touch on some distribution issues,
such as protecting your code and decreasing its download time, and discuss where JavaScript
tits into the “big picture” of the Web. The discussion in this chapter condenses many years
worth of programming experience into a few dozen pages, so that developers—new ones in
particular—can save themselves and their users some headaches by careful consideration of
the content presented here.

In this chapter we bring to a close our discussion of JavaScript by highlighting some

Errors

Before launching into a discussion of how errors can be found and handled, it is useful

to understand the taxonomy of errors found in typical scripts. The wide variety of errors
that can occur during the execution of a script can be roughly placed into three categories:
syntax errors, runtime errors, and semantic errors.

Syntax Errors

Of the three types of errors, syntax errors are the most obvious. They occur when you write
code that somehow violates the rules of the JavaScript language. For example, writing the
following,

L 231 var X =y + * z;

is a syntax error because the syntax of the * operator requires two expressions to operate
upon, and “y +” does not constitute a valid expression. Another example is

L 232 var myString = “This string doesn't terminate

because the string literal isn’t properly quoted.

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:26 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

L 233

L 234

L 235

L 236

Part VI: Real World JavaScript

Syntax errors are generally fatal in the sense that they are errors from which the interpreter
cannot recover. The reason they are fatal is that they introduce ambiguity, which the language
syntax is specifically designed to avoid. Sometimes the interpreter can make some sort of
assumption about what the programmer intended and can continue to execute the rest of the
script. For example, in the case of a non-terminated string literal, the interpreter might assume
that the string ends at the end of the line. However, scripts with syntax errors should, for all
intents and purposes, be considered incorrect, even if they do run in some manner, as they
do not constitute a valid program and their behavior can therefore be erratic, destructive,
or otherwise anomalous.

Luckily, syntax errors are fairly easy to catch because they are immediately evident
when the script is parsed before being executed. You cannot hide a syntax error from the
interpreter in any way except by placing it in a comment. Even placing it inside a block
that will never be executed, as in

if (false) { x =y + * z }

will still result in an error. The reason, as we have stated, is that these types of errors show
up during the parsing of the script, a step that occurs before execution.

You can easily avoid syntax errors by turning on error warnings in the browser and then
loading the script or by using one of the debuggers discussed later in this chapter.

Runtime Errors

The second category of errors are runtime errors, which are exactly what they sound like:
errors that occur while the script is running. These errors result from JavaScript that has the
correct syntax but which encounters some sort of problem in its execution environment.
Common runtime errors result from trying to access a variable, property, method, or object
that does not exist or from attempting to utilize a resource that is not available.

Some runtime errors can be found by examination of source code. For example,

window.allert (“Hi there”);

results in a runtime error because there is no allert() method of the Window object. This
example constitutes perfectly legal JavaScript, but the interpreter cannot tell until runtime
that invoking window.allert() is invalid, because such a method might have been added as
an instance property at some previous point during execution.

Other kinds of runtime errors cannot be caught by examination of source code. For
example, while the following might appear to be error-free,

var products = [“Widgets”, “Snarks”, “Phasers”];

var choice = parselnt (prompt (“Enter the number of the product you are
interested in”));

alert (“You chose: “ + products[choicel);

what happens if the user enters a negative value for choice? A runtime error indicating the
array index is out of bounds.
Although some defensive programming can help here,

var products = [“Widgets”, “Snarks”, “Phasers”];
var choice = parselnt (prompt (“*Enter the number of the product in which

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:26 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

L 23-7

L 238

Chapter 23: JavaScript Programming Practices

you are interested”));
if (choice >= 0 && choice < products.length)
alert (“You chose: “ + products[choicel);

the reality is that you cannot catch all potential runtime errors before they occur. You can,
however, catch them at runtime using JavaScript’s error and exception handling facilities,
which are discussed later in the chapter.

Semantic Errors

The final category of errors, semantic errors, occur when the program executes a statement
that has an effect that was unintended by the programmer. These errors are much harder to
catch because they tend to show up under odd or unusual circumstances and therefore go
unnoticed during testing. The most common semantic errors are the result of JavaScript’s
weak typing; for example:

function add(x, vy)
{

return x + y;
}

var mySum = add(prompt (“Enter a number to add to five”,”“), 5);

If the programmer intended add() to return the numeric sum of its two arguments, then
the code above is a semantic error in the sense that mySum is assigned a string instead of
a number. The reason, of course, is that prompt() returns a string that causes + to act as
the string concatenation operator, rather than as the numeric addition operator.

Semantic errors arise most often as the result of interaction with the user. They can
usually be avoided by including explicit checking in your functions. For example, we could
redefine the add() function to ensure that the type and number of the arguments are correct:

function add(x, vy)
{
if (arguments.length != 2 || typeof(x) != “number” || typeof(y) !=
“number”)
return (Number .NaN) ;
return x + y;

}

Alternatively, the add() function could be rewritten to attempt to convert its arguments to
numbers—for example, by using the parseFloat() or parselnt() functions.

In general, semantic errors can be avoided (or at least reduced) by employing defensive
programming tactics. If you write your functions anticipating that users and programmers
will purposely try to break them in every conceivable fashion, you can save yourself future
headaches. Writing “paranoid” code might seem a bit cumbersome, but doing so enhances
code reusability and site robustness (in addition to showcasing your mature attitude
towards software development).

A summary of our error taxonomy is found in Table 23-1, and the next few sections will
cover each of the mitigation techniques in detail.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:26 PM

Color profile: Generic CMYK printer profi
Default screen

Composite

4

Part VI:

Real World JavaScript

1
Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Error Type

Results From

Mitigation Technique

Syntax error

Violating the rules of the JavaScript
language

Turn on scripting error reporting and
use a debugger

Runtime error

Syntactically valid script that attempts
to do something impossible while
running (e.g., invoking a function that
doesn’t exist)

Defensive programming, use exception
handling, turn on scripting error
reporting, use a debugger

Semantic error

Script that does something unintended

Defensive programming and use a

by the programmer debugger

TABLE 23-1 Categories of JavaScript Programming Errors

Debugging

231

Every programmer makes mistakes, and a large part of becoming a more proficient developer
is honing your instincts for finding and rooting out errors in your code. Debugging is a skill
that is best learned through experience, and although basic debugging practices can be taught,
each programmer must develop his/her own approach. In this section we cover tools and
techniques that can help you with these tasks.

Turning on Error Messages

The most basic way to track down errors is by turning on error information in your browser.
By default, Internet Explorer shows an error icon in the status bar when an error occurs on
the page:

|
4

|
Error icon —f@ Done I_I_I_lﬂ Internet

Double-clicking this icon takes you to a dialog box showing information about the specific
error that occurred.

Because this icon is easy to overlook, Internet Explorer gives you the option to automatically
show the Error dialog box whenever an error occurs. To enable this option, select Tools |
Internet Options, and click the Advanced tab. Check the Display a Notification About Every
Script Error box, as shown in Figure 23-1.

Although Netscape 3 shows an error dialog each time an error occurs, Netscape 4+ and
Mozilla browsers send error messages to a special window called the JavaScript Console. To
view the Console in Netscape and Mozilla, type javascript: in the browser’s Location bar.
In Netscape 7+ and Mozilla you can also pull up the Console using the Tools menu (select
Tools | Web Development). Unfortunately, since Netscape 6+ and Mozilla give no visual
indication when an error occurs, you must keep the JavaScript Console open and watch for
errors as your script executes.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:26 PM

Color profile: Generic CMYK printer profil

Composite Default screen COemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices 5

FIGURE 23-1 Internet Dptions
Enabling
notification of Generall Securilyl F'rivacyl Contentl Eonnectionsl Programs Advanced
script errors in Settings:
Internet Explorer —

@ Accessibiliby =

O Always expand ALT text for images

Move system caret with focus/selection changes

Browuzing

Alwayz zend URLs az UTF-8 [requires restart]

O Automatically check for Internet Explarer updates

Cloge unuszed folders in History and Favorites (requires restart)
[Disable script debugaing

[AL {80 & nol ion aba

nable folder view for FTP sites
O Enable Install On Demand [Intemet Explarer)

Enable Install Orn Demand [Other)

Enable offline items to be synchronized on a scheduls

Enable page transitions

O Enable Persanalized Favarites Manu

Enable third-party browser extensions [requires restart] =
= -

Bestore Defaults |
ok I Cancel | Apply |

4]

NOTE In Netscape 6 the JavaScript Console is found in the Tasks menu (select Tasks | Tools).

Error Notifications

Error notifications that show up on the JavaScript Console or through Internet Explorer
dialog boxes are the result of both syntax and runtime errors. Loading a file with the syntax
error from a previous example, var myString = “This string doesn’t terminate results in
the error dialog and JavaScript Console messages in Figure 23-2. Loading a file with the
runtime error from a previous example, window.allert(“Hi there”); results in the error
dialog and JavaScript Console shown in Figure 23-3.

A very helpful feature of this kind of error reporting is that it includes the line number
at which the error occurred. However, you should be aware that occasionally line numbers
can become skewed as the result of externally linked files. Most of the time error messages
are fairly easy to decipher, but some messages are less descriptive than others, so it is useful
to explicitly mention some common mistakes here.

Common Mistakes

Table 23-2 indicates some common JavaScript mistakes and their symptoms. This list

is by no means exhaustive, but it does include the majority of mistakes made by novice
programmers. Of this list, errors associated with type mismatches and access to form
elements are probably the hardest for beginners to notice, so you should take special care
when interacting with forms or other user-entered data.

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:26 PM

Color profile: Generic CMYK printer profile

Composite Default screen

6 Part VI:

FIGURE 23-2
Syntax errors in

a) Internet Explorer
and b) Mozilla

FIGURE 23-3
Runtime errors in
a) Internet Explorer
and b) Mozilla

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:26 PM

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Real World JavaScript

'; Intemet Explorer

Froblems with this Web page might prevent it fran being displaved properly
or functioning praperly. In the future, pou can display this message by
double-clicking the waming icon displaped in the status bar.

W &lways display this message when a page contains erors.

Hide Details <<

Line: &

Char: 46

Error Unterminated sting constant

Code:0

LRL: http: / A/~ Fritz/tempdspntas-ermar. html

[& JavaScript Console
Eil= Edit Window Help
| ‘Warnings Messages | Clear

2 | Evaluate

M= 3

YWiew Tools

Eror unterminated string literal
Line: &

var myString = "This string doesn't terminate

Source File: http: /v ~fritz Stemp.sontaws-ermor. btml

4§ Internet Explorer

4 Problems with this \Web page might prevent it from being dizplayed properly
/ E of functioning properly. [the future, you can display this message by

double-clicking the warning icon displayed in the status bar.

V' Always digplay this message when a page containg ermors,

Hide Details <<

Line: 5

Char: 1

Error: Object doezn't suppart this property or method
Code: 0

URL: http: A~ Tritz/tempruntime-error. html

r; JavaScnpt Console

File Edit Window Help
| Al Wamings Meszages | Clear

Wiew Tools

Al | Evaluate

Error window, allert iz not a function
8 Source File: httpe/ Avsvad ~fritz/termp.runtime-grrar. hitrl Lime: &

Color profile:
Composite

Default screen

Generic CMYK printer profi

C

1
oemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23:

JavaScript Programming Practices

Mistake Example Symptom

Infinite loops while (x<myrray.length) A stack overflow error or a totally
dosomething(myarray[x]); unresponsive page.

Using assignment |if (x = 10) Clobbered or unexpected values. Some

instead of // or JavaScript implementations automatically

comparison (and var x == 10; fix this type of error. Many programmers put

vice versa) the variable on the right-hand side of a

comparison in order to cause an error when
this occurs. For example, “if (10 = x)”.

Unterminated string
literals

var myString = “Uh oh

An “unterminated string literal” error
message or malfunctioning code.

Mismatched
parentheses

if (typeof(x) == “number”
alert(“Number”);

T4

A “syntax error,” “missing ‘)’“, or
“expected ‘)’ “ error message.

Mismatched curly
braces

function mult(x,y)

{

return (x,y);

Extra code being executed as part of a
function or conditional, functions that are
not defined, and “expected ‘}'“, “missing

‘v, or “mismatched ‘}'“ error messages.

Mismatched X0 = 10; “invalid assignment,” “expected ‘]'“, or
brackets “syntax error” error messages.
Misplaced if (isNS4 == true); Conditional statements always being
semicolons hideLayers(); executed, functions returning early or

incorrect values, and very often errors
associated with unknown properties.

Omitted “break”
statements

switch(browser)
{
case “IE”: // |IE-specific

case “NS”: // NS-specific
1

Statements in the latter part of the switch
always being executed and very often
errors associated with unknown properties
will occur as well.

Type errors

var sum =2+ “2”;

Values with an unexpected type, functions
requiring a specific type not working
correctly, and computations resulting in NaN.

Accessing undefined
variables

var x = variableName;

“variableName is not defined” error
messages.

Accessing var x = window.propertyName; | undefined values where you do not expect

non-existent object them, computations resulting in NaN,

properties “propertyName is null or not an object,”
or “objectName has no properties” error
messages.

Invoking window.methodName() “methodName is not a function,” or

non-existent “object doesn’t support this property or

methods method” error messages.

TABLE 23-2 Common JavaScript Errors and Their Symptoms

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:27 PM

Color profile: Generic CMYK printer profi

Composite

Default screen

C

1
oemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Part VI: Real World JavaScript

Mistake Example Symptom

Invoking undefined |noSuchFunction(); “object expected” or “noSuchFunction is
functions not defined” error messages.

Accessing the
document before it
has finished loading

<head><script>var myElement=
document.all.myElement;</
script></head>

undefined values, errors associated with
nonexistent properties and methods,
transitory errors that go away after
page load.

Accessing a form
element rather than
its value

var x =
document.myform.myfield;

Computation resulting in NaN, broken
HTML-JS references, and form “validation”
that always rejects its input.

Assuming that
detecting an object
or method assumes
the existence of

all other features
related to the
detected object

L 239

if (document.layers)

{
1
if (document.all)

{
}

// do Netscape 4 stuff

// do all sorts of IE stuff

Probably will result in an error message
complaining about a nonexistent object
or property, because other proprietary
objects beyond the detected ones were
assumed to be presented and then used.

TABLE 23-2

Common JavaScript Errors and Their Symptoms (continued)

Using some sort of integrated development environment (IDE) or Web editor that
matches parentheses and that colors your code is often helpful in avoiding syntax errors.
Such programs automatically show where parentheses and brackets match and provide
visual indications of the different parts of the script. For example, comments might appear
in red while keywords appear blue and string literals appear in black.

Debugging Techn

iques

Although turning on error messages and checking for common mistakes can help you find
some of the most obvious errors in your code, doing so is rarely helpful for finding semantic
errors. There are, however, some widespread practices that many developers employ when
trying to find the reason for malfunctioning code.

Manually Outputting Debugging Information
One of the most common techniques is to output verbose status information as the script
runs in order to verify the flow of execution. For example, a debugging flag might be set at
the beginning of the script that enables or disables debugging output included within each
function. The most common way to output information in JavaScript is using the alert()
method; for example, you might write something like

var debugging
var whichImage

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:27 PM

true;

“widget”;

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

L 23-10

Chapter 23: JavaScript Programming Practices

if (debugging)

alert (“About to call swapImage() with argument: “ + whichImage) ;
var swapStatus = swapImage (whichImage) ;
if (debugging)

alert (“Returned from swapImage() with swapStatus=“+swapStatus) ;

and include alert()s marking the flow of execution in swaplmages(). By examining the
content and order of the alert()s as they appear, you are granted a window to the internal
state of your script.

Because using many alert()s when debugging large or complicated scripts may be
impractical (not to mention annoying), output is often sent to another browser window
instead. Using this technique, a new window;, say, debugWindow is opened at the beginning
of the script, and debugging information is written into the window using syntax like
debugWindow.document.write() method. The only potential gotcha is that you need to wait
for the window to actually be opened before attempting to write() to it. See Chapter 12 for
more information on inter-window communication.

Stack Traces Whenever one function calls another, the interpreter must keep track of the
calling function so that when the called function returns, it knows where to continue
execution. Such records are stored in the call stack, and each entry includes the name of the
calling function, the line number of invocation, arguments to the function, and other local
variable information. For example, consider this simple code:

function a(x)
{

document .write(x) ;
}
function b (x)
{

a(x+1);
}
function c(x)
{

b(x+1);
}
c(10);

At the document.write in a(), the call stack looks something like:

a(12), line 3, local variable information...
b(11), line 7, local variable information...
¢(10), line 11, local variable information...

When a() returns, b() will continue executing on line 8 and when it returns, c() will continue
executing on line 12.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:27 PM

Color profile: Generic CMYK printer profile

Composite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

10 Part VI: Real World JavaScript

A listing of the call stack is known as a stack trace, and can be useful when debugging.
Mozilla provides the stack property of the Error object (discussed in detail in a following
section) for just such occasions. We can augment our previous example to output a stack
trace in Mozilla:

L2311 function a(x)
{
document .writeln (x) ;
document .writeln(“\n----Stack trace below----\n”");
document .writeln((new Error) .stack);
}
function b(x) {
a(x+1);
}
function c(x) {
b(x+1);
}
c(10);

The output is shown in Figure 23-4. The top of the trace shows that the Error() constructor is
called. The next line indicates that the function that called the error constructor is a() and its
argument was 10. The other data on the line indicates the filename where this function is
defined (after the @) as well as the line number (after the colon) the interpreter is currently
executing. Successive lines show the calling functions as we’d expect, and the final line
shows that c() was called on line 16 of the currently executing file (the call to c() isn’t within
any function, so the record on the stack doesn’t list a function name).

EE - Mozilla [_ O] x]

. File Edt “iew Go Bookmarks Tools ‘window Help

GQ o Q Q |% Fitkp: £ A~ Fritz Atemp/ moz-stack -trace. bt | [Q Search] C:‘Ego
ry
2 =]

al

1
———-3tack trace helow----

Error(j@:0 B
al(lZ)fhtep:/fuww/ ~frive/ cemp/moz-scack-trace, htnl: &
b1l Bhttp://www/~frite/ temp/moz—stack-trace.html: 11
¢l Bhtep://vww/ ~frite/ cemp/ moz-stack-trace, html: 14
Bhtop://wyw/ ~frice/ temp/ moz-stack-crace ., html: 16

m@@g(ﬂ [one ﬂl&éh%

FIGURE 23-4 Using Error.stack to get a stack trace in Mozilla

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:27 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices 11

Other browsers don’t provide an easy mechanism to get a stack trace, but given the
Function properties discussed in Chapter 5, we can construct what it must look like

ourselves.

L2312 // Helper function to parse out the name from the text of the function
function getFunctionName (f)
{

if (/function (\w+)/.test(String(f)))
return RegExp.S$1;

else
return ““;

// Manually piece together a stack trace using the caller property
function constructStackTrace (f)

{
if ('f)
return ““;
var thisRecord = getFunctionName (f) + “(“;
for (var 1=0; i<f.arguments.length; i++) {
thisRecord += String(f.arguments[i]) ;
// add a comma if this isn’t the last argument
if (i+1 < f.arguments.length)
thisRecord += “, “;
}
return thisRecord + “)\n” + constructStackTrace(f.caller);
}
// Retrieve a stack trace. Works in Mozilla and IE.
function getStackTrace() {
var err = new Error;

// 1if stack property exists, use it; else construct it manually
if (err.stack)

return err.stack;
else

return constructStackTrace (getStackTrace.caller);

We can now write out the example as:

L 2313 function a(x)
{
document .writeln (x) ;
document .writeln(“\n----Stack trace below----\n”");
document .writeln (getStackTrace()) ;

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:27 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

12 Part VI: Real World JavaScript

function b (x)
{

a(x+1);
}

function c(x)
{
b(x+1);
}
c(10);

The output in Internet Explorer is shown in Figure 23-5.

This is a handy function to have in an external script for debugging. However, the
capabilities of this function and the techniques we’ve discussed so far leave a lot to be
desired. They rely on manual insertion of debugging code into your scripts, and don’t
provide any interactivity. Fortunately, specialized tools enable far more in-depth
examination of your code at runtime.

Using a Debugger

A debugger is an application that places all aspects of script execution under the control of
the programmer. Debuggers provide fine-grain control over the state of the script through
an interface that allows you to examine and set values as well as control the flow of
execution.

Once a script has been loaded into a debugger, it can be run one line at a time or
instructed to halt at certain breakpoints. The idea is that once execution is halted, the
programmer can examine the state of the script and its variables in order to determine
if something is amiss. You can also watch variables for changes in their values. When
a variable is watched, the debugger will suspend execution whenever the value of the
variable changes. This is tremendously useful in trying to track down variables that are
mysteriously getting clobbered. Most debuggers also allow you to examine stack traces,
the call tree representing the flow of execution through various pieces of code that we saw
in the previous section. And to top it all off, debuggers are often programmed to alert the
programmer when a potentially problematic piece of code is encountered. And because

FIGURE 23-5 4} - Microsoft Internet Explorer M=

éor::tr;ﬂslgd stack J File Edt “iew Favoites Tools Help |
trace J $GiBack - = -) 7t | EhSearch [5] Favorites 2%

12
—-—-—-=3tack trace helow----
allz)

hill)
cil0)

|:L§| Daone ’_l_l_ Local intranet

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:27 PM

Color profile: Generic CMYK printer profile

Composite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices

debuggers are specifically designed to track down problems, the error messages and
warnings they display tend to be more helpful than those of the browser.

There are several major JavaScript debuggers in current use. By far the most popular
free debugger is Venkman, the debugger of the Mozilla project. It integrates with Mozilla
and Netscape 6+ and offers all the features most developers might need, including a profiler
enabling you to measure the performance of your code. If you've installed the “Full”
version of a Mozilla-based browser, this debugger is already available to you. If not, use a
Mozilla-based browser to access http://www.mozilla.org/projects/venkman/ and follow the
installation instructions. This should be as simple as clicking on the .xpi file for the version
you want. To start the debugger, select Tools | Web Development | JavaScript Debugger.
Figure 23-6 shows a screenshot of Venkman.

A somewhat popular free utility for Internet Explorer 4 and later is the Microsoft Script
Debugger. It is available from http://msdn.microsoft.com/scripting and integrates with
Internet Explorer if installed. To enable this integration, select Tools | Internet Options. In
the Advanced tab, uncheck Disable Script Debugging, as shown in Figure 23-7. Whenever
debugging is turned on in IE and you load a page that has errors, the following dialog

%% JavaScript Debugger [_[O] x]
Eile Edit Miew Debug Profle Took ‘wWindow Help

8 JHd D8

- Swp Frofile__Fretty Frint
O [Loaded Seripts] x | O [Source Code x
Search | | manual-stack-trace_ il %
MName ‘ Ling iy 13 T
= 7 StingBundle = 14 function constructftackTrace (f) {
O getSting 14 18 if (1£)
m] getForr.natledStrmg 24 16 return "";
0O get_stingBundle 3z —
0 gst_sic 1 [| 17 X X ||
A oot o e | 15 var thisRecord = getFunctionMName (£) + "(";
12
O [Local Variables] x 20 for (var i=0; i<f.arguments.length; i++ |
Name Value |LU 21 thisRecord += String(f.arguments[i]);
22
23 if (i+1 < f.arguments.length)
24 thigRecord += ", "; |
25 }
26
27 return thisRecord + ")'n" + constructStackTrace(f.caller)
28 }
O [Call Stack | x 20
Mame Location = a0
31 function getStackTrace () |
32 var err = new Error;
33 (=]
4] I
hittp: ¢ s~ Hikz fbermpd manuak-stack-trace hrnl
o T < | o [Interactive Session [context: venkman.xul, scope: [object ChromeWindow]] | x
Name Line/PC

jm] @ [@2 | Welcome to the Javaserip: Debugger

FIGURE 23-6 The Venkman JavaScript debugger in action

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:27 PM

Color profile: Generic CMYK printer profil

Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

14

Part VI: Real World JavaScript

FIGURE 23-7 Internet Dptions [7]%]
Enabling script
debugging in Generall Securit_l,ll F'ri\rac_l,ll Eontentl Eonnectionsl Frograms ~ Advanced
Internet Explorer Seftings:

|3 Accessibiity =

O Always expand ALT text for images

tove spetem caret with focus/zelection changes

Browsing

Alwaps send URLs az UTF-3 [requires restart]

O Automatically check for Internet Explarer updates

Claze unuzed falders in History and Favarnites [requires restart)

Enable folder views for FTP sites

O Enable Install On Demand [Intermet Explarer)

Enable Inztall On Demand [Other)

Enable offling items ta be synchronized on a schedule

Enable page transitions

[Enable Personalized Favorites Menu

Enable third-party browser extenzions [requires restart) =
4= -

Restore Defaults |
QK. I Cancel | Lipply |

is shown in place of the normal error message, allowing you to load the page into the
debugger.

Of course, you can also load a document directly into the debugger without having an
eITor OCCUr.

The Microsoft Script Debugger has the advantage of close coupling with Microsoft’s
JScript and Document Object Model, but no longer appears to be under active development.
Microsoft Script Debugger is shown in Figure 23-8.

The final major option you have is to use a commercial development environment.
AJavaScript debugger is usually just one small part of such development tools, which
can offer sophisticated HTML and CSS layout capabilities and can even automate certain
aspects of site generation. This option is often the best choice for professional developers,
because chances are you will need a commercial development environment anyway, so you
might as well choose one with integrated JavaScript support. A typical example of such an
environment is Macromedia’s Dreamweaver, available from http://www.macromedia.com/
software/dreamweaver/. There are two primary drawbacks to such environments. The
first and most obvious is the expense. The second is the fact that such tools tend to emit
spaghetti code, so trying to hook your handwritten code into JavaScript or HTML and CSS
generated by one of these tools can be tedious.

Now that we have covered some tools for tracking down errors in your code, we turn to
techniques you can use to prevent or accommodate problems that might be outside of your
direct control.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:28 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices

i:éiljlalit:lmoﬂ Script Debugger
File Edit “iew Debug ‘Window Help

[Fie @ o8| Wl [edt 4 B2 @ X B ||pebug EU [f2 = (= 22| O o |[F% O

Eé:.JFhaad only: http:/ /www/~fritz/temp/manual-stack-trace. html

function getFunctionMame (£] §
if (ffunction (4w /. .test(3tring(f)))
return RegExp.§1;
slse
return "7;

function construct3tackTrace (£)
if [(If)
return "T;

war thizRecord = getFunctionMame (£) + "(":

|f0r (war i=0; i<f.arguments.length; i++ {
thisRecord += String(f.arguwents[i]):

if {i+l < f.arguments.length)
thisRecord += ", ":

¥

return thisRecord + ")4n" + constructStackTrace |(f.caller); é; Microsoft Internet Explarer

@ manual-stack-tace. html

i

function get3tackTrace() |
var err = new Error;

if [err.stack]
Eeturn err.stack:
else
return constructitackTrace (get3tackTrace.caller);
}

EV oz

Ready |tn20 4

FIGURE 23-8 Use Microsoft Script Debugger to help track down errors.

Defensive Programming
Defensive programming is the art of writing code that functions properly under adverse
conditions. In the context of the Web, an “adverse condition” could be many different
things: for example, a user with a very old browser or an embedded object or frame that
gets stuck while loading. Coding defensively involves an awareness of the situations in
which something can go awry. Some of the most common possibilities you should try to
accommodate include

¢ Users with JavaScript turned off
¢ Users with cookies turned off

¢ Embedded Java applets that throw an exception

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:28 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

16

Part VI: Real World JavaScript

¢ Frames or embedded objects that load incorrectly or incompletely
* Older browsers that do not support modern JavaScript objects or methods

¢ Older browsers with incomplete JavaScript implementations—for example, those
that do not support a specific feature such as the push(), pop(), and related methods
in the Array object of versions of Internet Explorer prior to 5.5

® Browsers with known errors, such as early Netscape browsers with incorrectly
functioning Date objects

¢ Users with text-based or aural browsers
¢ Users on non-Windows platforms
® Malicious users attempting to abuse a service or resource through your scripts

e Users who enter typos or other invalid data into form fields or dialog boxes, such as
entering letters in a field requiring numbers

The key to defensive programming is flexibility. You should strive to accommodate as
many different possible client configurations and actions as you can. From a coding standpoint,
this means you should include HTML (such as <noscript>s) and browser sensing code that
permit graceful degradation of functionality across a variety of platforms. From a testing
standpoint, this means you should always run a script in as many different browsers and
versions and on as many different platforms as possible before placing it live on your site.

In addition to accommodating the general issues described above, you should also
consider the specific things that might go wrong with your script. If you are not sure when
a particular language feature you are using was added to JavaScript, it is always a good idea
to check a reference, such as Appendix B of this book, to make sure it is well supported. If you
are utilizing dynamic page manipulation techniques or trying to access embedded objects,
you might consider whether you have appropriate code in place to prevent execution of
your scripts while the document is still loading. If you have linked external .js libraries, you
might include a flag in the form of a global variable in each library that can be checked to
ensure that the script has properly loaded.

The following sections outline a variety of specific techniques you can use for defensive
programming. While no single set of ideas or approaches is a panacea, applying the following
principles to your scripts can dramatically reduce the number of errors your clients encounter.
Additionally, they can help you solve those errors that are encountered in a more timely fashion,
as well as “future proof” your scripts against new browsers and behaviors.

However, at the end of the day, the efficacy of defensive programming comes down to
the skill, experience, and attention to detail of the individual developer. If you can think of a
way for the user to break your script or to cause some sort of malfunction, this is usually
a good sign that more defensive techniques are required.

Error Handlers

Internet Explorer 3+ and Netscape 3+ provide primitive error-handling capabilities through the
nonstandard onerror handler of the Window object. By setting this event handler, you can
augment or replace the default action associated with runtime errors on the page. For example,
you can replace or suppress the error messages shown in Netscape 3 and Internet Explorer (with
debugging turned on) and the output to the JavaScript Console in Netscape 4+. The values to
which window.onerror can be set and the effects of doing so are outlined in Table 23-3.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:28 PM

Color profile:

Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

L2314

L 2315

l23-2

Chapter 23: JavaScript Programming Practices

Value of window.onerror Effect
Null Suppresses reporting of runtime errors in Netscape 3+.

A function The function is executed whenever a runtime error occurs. If the
function returns true then the normal reporting of runtime errors is
suppressed. If it returns false the error is reported in the browser
as usual.

TABLE 23-3 window.onerror Values and Effects

NOTE The onerror handler is also available for objects other than Window in many browsers,
most notably the and <object> elements.

For example, to suppress error messages in older browsers you might use

function doNothing () { return true; }
window.onerror = doNothing;
window.noSuchProperty () // throw a runtime error

Since modern browsers don’t typically display script errors unless users specifically
configure them to do so, the utility of the return value is limited.

The truly useful feature of onerror handlers is that they are automatically passed three
values by the browser. The first argument is a string containing an error message describing
the error that occurred. The second is a string containing the URL of the page that generated
the error, which might be different from the current page if, for example, the document has
frames. The third parameter is a numeric value indicating the line number at which the
error occurred.

NOTE Early versions of Netscape 6 did not pass these values to onerror handlers.

You can use these parameters to create custom error messages, such as:

function reportError (message, url, lineNumber)

{

if (message && url && lineNumber)

alert (“An error occurred at “+ url + “, line “ + lineNumber +
“\nThe error is: “ + message);
return true;
}
window.onerror = reportError; // assign error handler
window.noSuchProperty () ; // throw an error

The result of which in Internet Explorer might be

Microzoft Internet Explorer

An emor occurred at hitp:/ faena itz bempiuntime-emor. html, line 12
The ermor iz Object doesn't support this property or method

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:28 PM

17

Color profile:

Composite

L 23-16

18

Generic CMYK printer profi

1
Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Part VI: Real World JavaScript

There are two important issues regarding use of the onerror handler. The first is that
this handler fires only as the result of runtime errors; syntax errors do not trigger the
onerror handler and in general cannot be suppressed. The second is that support for this
handler is spotty under some versions of Internet Explorer. While Internet Explorer 4, 5.5,
and 6 appear to have complete support, some versions of Internet Explorer 5.0 might have
problems.

Automatic Error Reporting

An interesting use for this feature is to add automatic error reporting to your site. You
might trap errors and send the information to a new browser window, which automatically
submits the data to a CGI or which loads a page that can be used to do so. We illustrate
the concept with the following code. Suppose you have a CGI script “submitError.cgi” on
your server that accepts error data and automatically notifies the webmaster or logs the
information for future review. You might then write the following page, which retrieves
data from the document that opened it and allows the user to include more information
about what happened. This file is named “errorReport.html” in our example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd”>
<html xmlns=“http://www.w3.0rg/1999/xhtml”>
<head>
<title>Error Submission</title>
<meta http-equiv=“content-type” content=“text/html; charset=IS0-8859-1" />
<gscript type=“text/javascript”>
<!--
/* fillValues () is invoked when the page loads and retrieves error data
from the offending document */
function fillvalues/()
{
if (window.opener && !window.opener.closed && window.opener.lastErrorURL)
{
document .errorForm.url.value = window.opener.lastErrorURL;
document .errorForm.line.value = window.opener.lastErrorLine;
document .errorForm.message.value = window.opener.lastErrorMessage;
document .errorForm.userAgent.value = navigator.userAgent;
}
}
//==>
</script>
</head>
<body onload=“fillalues() ">
<h2>An error occurred</h2>
Please help us track down errors on our site by describing in more detail
what you were doing when the error occurred. Submitting this form helps us
improve the quality of our site, especially for users with your browser.
<form id=“errorForm” name=“errorForm” action=“/cgi-bin/submitError.cgi”>
The following information will be submitted:

URL: <input type=“text” name=“url” id=“url” size="“80" />

Line: <input type=“text” name=“1line” id=“1line” size=“4" />

Error: <input type=“text” name=“message” id=“message” size="80" />

Your browser: <input type=“text” name=“usergent” id=“usergent” size=%“60" />

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday,

May 15,

2004 2:14:28 PM

Color profile: Ge
Composite Defaul

L2317

L 2318

neric CMYK printer profi

1
t screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices

Additional Comments:

<textarea name=“comments” cols=“40" rows=“5"></textarea>

<input type=‘“submit” value=“Submit to webmaster” />

</form>

</body>

</html>

The other part of the script is placed in each of the pages on your site and provides the
information that fillValues() requires. It does so by setting a handler for onerror that stores
the error data and opens “errorReport.html” automatically when a runtime error occurs:

var lastErrorMessage, lastErrorURL, lastErrorLine;
// variables to store error data
function reportError (message, url, lineNumber)

{

if (message && url && lineNumber)
{
lastErrorMessage = message;
lastErrorURL = url;
lastErrorLine = lineNumber;
window.open (“errorReport.html”) ;
}
return true;
}

window.onerror = reportError;

When “errorReport.html” is opened as a result of an error, it retrieves the relevant data
from the window that opened it (the window with the error) and presents the data to the user
in a form. Figure 23-9 shows the window opened as the result of the following runtime error:

window.noSuchMethod () ;

The first four form values are automatically filled in by fillValues(), and the <textarea> shows
a hypothetical description entered by the user. Of course, the presentation of this page needs
some work (especially under Netscape 4), but the concept is solid.

Exceptions

An exception is a generalization of the concept of an error to include any unexpected condition
encountered during execution. While errors are usually associated with some unrecoverable
condition, exceptions can be generated in more benign problematic situations and are not
usually fatal. JavaScript 1.4+ and JScript 5.0+ support exception handling as the result of
their movement towards ECMAScript conformance.

When An Exception Is Generated, It Is Said To Be Thrown (Or, In Some Cases, Raised).
The Browser May Throw Exceptions In Response To Various Tasks, Such As Incorrect Dom
Manipulation, But Exceptions Can Also Be Thrown By The Programmer Or Even An
Embedded Java Applet. Handling An Exception Is Known As Catching An Exception.
Exceptions Are Often Explicitly Caught By The Programmer When Performing Operations
That He Or She Knows Could Be Problematic. Exceptions That Are Uncaught Are Usually
Presented To The User As Runtime Errors.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:28 PM

19

Color profile: Generic CMYK printer profile

Composite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

20 Part VI: Real World JavaScript

3 Error Submizsion - Microsoft Internet E xplorer

Jé.#-ﬁﬁ@@”

Back Farward Stop Refresh Home Search Favorites

J File Edit “iew Fawortes Toolz Help

An error occurred

Please help us track down errors on our site by describing i more detail what you were doing when the
error occurred. Submitting this form helps us tnprove the quality of our site, especially for users with
your browser.

The following information will be subtnitted:

TERL. Ihttp:,.",e\rw-nm.yourdomain.comfthrowAnError.htmI

Line: |34—

Error: |Object doesn't suppaort this propery or method

Tour brovwset: |MDziIIa,."4.EI (compatible; MSIE 5.5; Windows 98;)
Additienal Comtnents:

I loaded the page and it immediately _‘|
sent me to this page (I didn't touch
anything, I swear!]|

Submit to webrnaster I

N

[&] Dore l_l_le Intemet

FIGURE 23-9 Automatic error reporting with the onerror handler

The Error Object
When an exception is thrown, information about the exception is stored in an Error object.
The structure of this object varies from browser to browser, but its most interesting
properties and their support are described in Table 23-4.

The Error() constructor can be used to create an exception of a particular type. The
syntax is

var variableName = new Error(message);

where message is a string indicating the message property that the exception should have.
Unfortunately, support for the argument to the Error() constructor in Internet Explorer 5
and some early versions of 5.5 is particularly bad, so you might have to set the message
property manually, such as:

L 23-19 var myException = new Error (“Invalid data entry”);
myException.message = “Invalid data entry”;

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:29 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices

Property IE5? |IE5.5+? |Mozilla/NS6+? ECMA? |Description

description |Yes Yes No No String describing the nature of the
exception.
fileName No No Yes No String indicating the URL of the

document that threw the exception.

lineNumber |No No Yes No Numeric value indicating the line
number of the statement that
generated the exception.

message No Yes Yes Yes String describing the nature of the
exception.
Name No Yes Yes Yes String indicating the type of the

exception. ECMAScript values for
this property are “EvalError,”
“RangekError,” “ReferenceError,”
“SyntaxError,” “TypeError,” and
“URIError.”

Number Yes Yes No No Number indicating the Microsoft-
specific error number of the
exception. This value can deviate
wildly from documentation and
from version to version.

Stack No No Yes No String containing the call stack at
the point the exception occurred.

TABLE 23-4 Properties of the Error Object Vary from Browser to Browser

You can also create instances of the specific ECMAScript exceptions given in the name
row of Table 23-4. For example, to create a syntax error exception you might write

L 23-20 var myException = new SyntaxError (“The syntax of the statement was invalid”);

However, in order to keep user-created exceptions separate from those generated by the
interpreter; it is generally a good idea to stick with Error objects unless you have a specific
reason to do otherwise.

try, catch, and throw
Exceptions are caught using the try/catch construct. The syntax is

try {

Ztatements that might generate an exception
} catch (theException) {

statements to execute when an exception is caught
} finally {

statements to execute unconditionally

}

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:29 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

22 Part VI: Real World JavaScript

If a statement in the try block throws an exception, the rest of the block is skipped and
the catch block is immediately executed. The Error object of the exception that was thrown
is placed in the “argument” to the catch block (theException in this case, but any identifier
will do). The theException instance is accessible only inside the catch block and should not
be a previously declared identifier. The finally block is executed whenever the try or catch
block finishes and is used in other languages to perform clean-up work associated with the
statements that were tried. However, because JavaScript performs garbage collection, the
finally block isn’t generally very useful.

Note that the try block must be followed by exactly one catch or one finally (or one of
both), so using try by itself or attempting to use multiple catch blocks will result in a syntax
error. However, it is perfectly legal to have nested try/catch constructs, as in the following;:

L2321 try {
// some statements to try
try {

// some statements to try that might throw a different exception
} catch(theException) {
// perform exception handling for the inner try
}
} catch (theException) {
// perform exception handling for the outer try

}

Creating an instance of an Error does not cause the exception to be thrown. You must
explicitly throw it using the throw keyword. For example, with the following,

L 23-22 var myException = new Error (“Couldn’t handle the data”);
throw myException;

the result in Mozilla’s JavaScript Console is

233 [¥ JavaScript Console
. File Edit “iew Toolz ‘Window Help
a Al “warnings Messages | Clear

all | Evaluate

.:: Eror. uncaught exception: Error: Couldn't handle the data

In Internet Explorer with debugging turned on, a similar error is reported.

NOTE You can throw any value you like, including primitive strings or numbers, but creating
and then throwing an Error instance is the preferable strategy.

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:29 PM

Color profile:

Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

L 23-23

L 2324

L 23-25

I 23-4

Chapter 23: JavaScript Programming Practices

To illustrate the basic use of exceptions, consider the computation of a numeric value as a
function of two arguments (mathematically inclined readers will recognize this as an identity
for sine(a + b)). Using previously discussed defensive programming techniques, we could
explicitly type-check or convert the arguments to numeric values in order to ensure a valid
computation. We choose to perform type checking here using exceptions (and assuming, for
clarity, that the browser has already been determined to support JavaScript exceptions):

function throwMyException (message)

{
var myException = new Error (message) ;
throw myException;
}
function sineOf (a, b)
{
var result;
try
{
if (typeof(a) != “number” || typeof(b) != “number”)
throwMyException (“The arguments to sineOf () must be numeric”);
if (!isFinite(a) || !isFinite(b))
throwMyException (“The arguments to sineOf () must be finite”);
result = Math.sin(a) * Math.cos(b) + Math.cos(a) * Math.sin(b);
if (isNaN(result))
throwMyException (“The result of the computation was not a number”) ;
return result;
} catch (theException) {
alert (“Incorrect invocation of sineOf(): “ + theException.message) ;
}
}

Invoking this function correctly, for example,

var myValue = sineOf (1, .5);

returns the correct value, but an incorrect invocation,
var myValue = sineOf (1, “.5");

results in an exception, in this case:

Microzoft Internet Explorer E

& Incarect invocation af sineDf): The arguments to sine0f) must be numeric

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:29 PM

23

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

24

L 23-26

Part VI: Real World JavaScript

Exceptions in the Real World

Exceptions are the method of choice for notification of and recovery from problematic
conditions, but the reality is that they are not well supported even in many modern Web
browsers. To accommodate the non-ECMAScript Error properties of Internet Explorer 5.x
and Netscape 6, you will probably have to do some sort of browser detection in order to
extract useful information. While it might be useful to have simple exception handling,
such as

try {

// do something IE or Netscape specific
} catch (theException) {
}

that is designed to mask the possible failure of an attempt to access proprietary browser
features, the real application of exceptions at the current moment is to Java applets and the
DOM.

By enclosing potentially dangerous code such as LiveConnect calls to applets and the
invocation of DOM methods in try/catch constructs, you can bring some of the robustness
of more mature languages to JavaScript. However, using exception handling in typical
day-to-day scripting tasks is probably still a few years in the future. For the time being,
JavaScript’s exception handling features are best used in situations where some guarantee
can be made about client capabilities—for example, by applying concepts from the following
two sections. Use them if you can guarantee that your users’ browsers support them;
otherwise, they’re best avoided.

Capability and Browser Detection

We've seen some examples of capability and browser detection throughout the book, but
there remain a few relevant issues to discuss. To clarify terminology in preparation for
this discussion, we define capability detection as probing for support for a specific object,
property, or method in the user’s browser. For example, checking for document.all or
document.getElementByld would constitute capability detection. We define browser
detection as determining which browser, version, and platform is currently in use. For
example, parsing the navigator.userAgent would constitute browser detection.

Often, capability detection is used to infer browser information. For example, we might
probe for document.layers and infer from its presence that the browser is Netscape 4.x. The
other direction holds as well: Often capability assumptions are made based upon browser
detection. For example, the presence of “MSIE 6.0” and “Windows” in the userAgent string
might be used to infer the ability to use JavaScript’s exception handling features.

When you step back and think about it, conclusions drawn from capability or browser
detection can easily turn out to be false. In the case of capability detection, recall from
Chapter 17 that the presence of navigator.plugins in no way guarantees that a script can
probe for support for a particular plug-in. Internet Explorer does not support plug-in
probing, but defines navigator.plugins[] anyway as a synonym for document.embeds|].
Drawing conclusions from browser detection can be equally as dangerous. Although Opera
has the capability to masquerade as Mozilla or Internet Explorer (by changing its userAgent
string), both Mozilla and Internet Explorer implement a host of features not found in Opera.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:29 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices

While it is clear that there are some serious issues here that warrant consideration, it is
not clear exactly what to make of them. Instead of coming out in favor of one technique
over another, we list some of the pros and cons of each technique and suggest that a
combination of both capability and browser detection is appropriate for most applications.

The advantages of capability detection include

® You are free from writing tedious case-by-case code for various browser version
and platform combinations.

¢ Users with third-party browsers or otherwise alternative browsers (such as text
browsers) will be able to take advantage of functionality that they would otherwise
be prevented from using because of an unrecognized userAgent (or related) string.
Capability detection is “forward safe” in the sense that new browsers emerging in
the market will be supported without changing your code, so long as they support
the capabilities you utilize.

Disadvantages of capability detection include

¢ The appearance of a browser to support a particular capability in no way guarantees
that that capability functions the way you think it does. For example, consider that
navigator.plugins[] in Internet Explorer is available but does not provide any data.

¢ The support of one particular capability does not necessarily imply support for related
capabilities. For example, it is entirely possible to support document.getElementById()
but not support Style objects. The task of verifying each capability you intend to use
can be rather tedious.

The advantage of browser detection includes

® Once you have determined the user’s browser correctly, you can infer support for
various features with relative confidence, without having to explicitly detect each
capability you intend to use.

The disadvantages of browser detection include

¢ Support for various features often varies widely across platforms, even in the same
version of the browser (for example, DHTML Behaviors are not supported in Internet
Explorer across platforms as the Mac OS does not implement them).

* You must write case-by-case code for each browser or class of browsers that you
intend to support. As new versions and browsers continue to hit the market, this
prospect looks less and less attractive.

® Users with third-party browsers may be locked out of functionality their browsers
support simply by virtue of an unrecognized userAgent.

® Browser detection is not necessarily “forward safe.” That is, if a new version of a
browser or an entirely new browser enters the market, you will in all likelihood be
required to modify your scripts to accommodate the new userAgent.

¢ There is no guarantee that a valid userAgent string will be transmitted.

¢ There is no guarantee that the userAgent value is not falsified.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:29 PM

25

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

26

L 23-27

Part VI: Real World JavaScript

The advent of the DOM offers hope for a simplification of these issues. At the time of
this edition’s publication (2004), more than 75 percent of users have browsers that support
most if not all commonly used DOMO and DOML1 features (Internet Explorer 6+, Netscape
6+, Mozilla 1+). While this number will increase, there’s no guarantee that your users will
be “average.” Additionally, if your site must be maximally compatible with your user base
(e.g., you're running an e-commerce site), you have no choice but to do some sort of
capability or browser detection to accommodate old browsers.

We offer the following guidelines to help you make your decisions:

e Standard features (such as DOMO and DOM1) are probably best detected using
capabilities. This follows from the assumption that support for standards is relatively
useless unless the entire standard is implemented. Additionally, it permits users with
third-party standards-supporting browsers the use of such features without the
browser vendor having to control the market or have their userAgent recognized.

® Support for proprietary features is probably best determined with browser detection.
This follows from the fact that such features are often difficult to capability-detect
properly and from the fact that you can fairly easily determine which versions and
platforms of a browser support the features in question.

These guidelines are not meant to be the final word in capability versus browser
detection. Careful consideration of your project requirements and prospective user must
factor into the equation in a very significant way. Whatever your choice, it is important
to bear in mind that there is another tool you can add to your defensive programming
arsenal for accomplishing the same task.

Code Hiding

Browsers are supposed to ignore the contents of <script> tags with language or type
attributes that they do not recognize. We can use this to our advantage by including a
cascade of <script>s in the document, each targeting a particular language version. The
<script> tags found earlier in the markup target browsers with limited capabilities, while
those found later in sequence can target increasingly specific, more modern browsers.

The key idea is that there are two kinds of code hiding going on at the same time. By
enclosing later scripts with advanced functionality in elements with appropriate language
attributes (for example, “JavaScriptl.5”), their code is hidden from more primitive browsers
because these scripts are simply ignored. At the same time, the more primitive code can be
hidden from more advanced browsers by replacing the old definitions with new ones found
in later tags.

To illustrate the concept more clearly, suppose we wanted to use some DOM code in the
page when the DOM is supported, but also want to degrade gracefully to more primitive
non-standard “DHTML” functionality when such support is absent. We might use the
following code, which redefines a writePage() function to include advanced functionality,
depending upon which version of the language the browser supports:

<script language=“Javacript”>
<!—
function writePage ()

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:29 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices

{
// code to output primitive HTML and JavaScript for older browsers

}
/] —=>
</script>

<script language=“Javacriptl.3”>
<!—
function writePage ()

{
// code to output more advanced HTML and JavaScript that utilizes the DOM}

}
/] —=>
</script>

<script language=“Javacript”>

<!--

// actually write out the page according to which writePage is defined
writePage () ;

/] —=>

</script>

Because more modern browsers will parse the second <script>, the original definition of
writePage() is hidden. Similarly, the second <script> will not be processed by older
browsers, because they do not recognize its language attribute.

OTE ile the language attribute is considered non-standard, you can see that it is much more
N While the language attribute i idered tandard, y that it i h
flexible than the standard type attribute and thus the attribute continues to be used widely.

If you keep in mind the guidelines for the language attributes given in Table 23-5, you
can use this technique to design surprisingly powerful cascades (as will be demonstrated
momentarily).

NOTE Opera 3 parses any <script> with its language attribute beginning with “JavaScript.”

language Attribute Supported By

Jscript All scriptable versions of Internet Explorer and Opera 5+
JavaScript All scriptable versions of Internet Explorer, Opera, and Netscape
JavaScript1.1 Internet Explorer 4+, Opera 3+, Mozilla, and Netscape 3+
JavaScript1.2 Internet Explorer 4+, Opera 3+, Mozilla, and Netscape 4+
JavaScript1.3 Internet Explorer 5+, Opera 4+, Mozilla, and Netscape 4.06+
JavaScript1.5 Opera 5+, Mozilla, and Netscape 6+

TABLE 23-5 The language Attributes Recognized by Major Browsers

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:29 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

28 Part VI: Real World JavaScript

To glimpse the power that the language attribute affords us, suppose that you wanted
to include separate code for ancient browsers, Netscape 4, Mozilla, and Internet Explorer
4+. You could do so with the following;:

L 23-28 <script language=“JScript”>
<!l--
// set a flag so we can differentiate between Netscape and IE later on

var 1sIE = true;

/] —=>

</script>

<script language=“Javacript”>
<!--

function myFunction()

{

// code to do something for ancient browsers
}
/] ==>
</script>
<script language=“Javacriptl.2”>
<!--
if (window.isIE)
{

function myFunction ()

{

// code to do something specific for Internet Explorer 4+

}
}
else
{

function myFunction ()
{
// code to do something specific for Netscape 4

}
}
/] —=>
</script>
<script language=“Javacriptl.5”>
<!l--
function myFunction()
{

// code to do something specific for Mozilla and Opera 5+
}
/] ==>
</script>
<noscript>

Error:JavaScript not supported

</noscript>

We’ve managed to define a cross-browser function, myFunction(), for four different
browsers using only the language attribute and a little ingenuity! Combined with some
simple browser detection, this technique can be very powerful indeed.

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:30 PM

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices

NoOTE Always remember the language attribute is deprecated under HTML 4, so don’t expect
your pages to validate as strict HTML 4 or XHTML when using this trick. The upside is that all
modern browsers continue to support the attribute even though it is no longer officially a part of
the language.

Remember that it is always good style to include <noscript>s for older browsers or
browsers in which JavaScript has been disabled. We provided a very basic example of
<noscript> here, but if we followed very defensive programming styles each piece of code
in this book should properly have been followed by a <noscript> indicating that JavaScript
is required or giving alternative functionality for the page or indicating that a significant
error has occurred. We omitted such <noscript>s in most cases for the sake of brevity and
clarity, but we would always include them in a document that was live on the Web. See
Chapter 1 for a quick <noscript> refresher. We now turn our attention towards general
practices that are considered good coding style.

Coding Style

Because of the ease with which JavaScript can be used for a variety of tasks, developers
often neglect good coding style in the rush to implement. Doing so often comes back to
haunt them when later they are faced with mysterious bugs or code maintenance tasks and
cannot easily decipher the meaning or intent of their own code. Practicing good coding
habits can reduce such problems by bringing clarity and consistency to your scripts.

While we have emphasized what constitutes good coding style throughout the book, we
summarize some of the key aspects in Table 23-6. We cannot stress enough how important
good style is when undertaking a large development project, but even for smaller projects
good style can make a serious difference. The only (possible) time you might wish to take
liberties with coding style is when compressing your scripts for speed, but then again you
might want to let tools do that for you and write nice descriptive code for yourself.

Aspect of JavaScript | Recommendation

Variable identifiers Use camel-back capitalization and descriptive names that give an indication
of what value the variable might be expected to hold. Appropriate variable
names are most often made up of one or more nouns.

Function identifiers Use the camel-back capitalization and descriptive names that indicate
what operation they carry out. Appropriate function names are most
often made up of one or more verbs.

Variable declarations | Avoid implicitly declared variables as they clutter the global namespace
and lead to confusion. Always use var to declare your variables in the
most specific scope possible. Avoid global variables whenever possible.

Functions Pass values that need to be modified by reference by wrapping them in a
composite type. Or, alternatively, return the new value that the variable
should take on. Avoid changing global variables from inside functions.
Declare functions in the document <head> or in a linked .js library.

TABLE 23-6 Good Coding Style Guidelines

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:30 PM

29

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

30

Part VI: Real World JavaScript

Aspect of JavaScript Recommendation

Constructors Indicate that object constructors are such by capitalizing the first letter
of their identifier.
Comments Use comments liberally. Complex conditionals should always be

commented and so should functions.

Indentation Indent each block two to five spaces further than the enclosing block.
Doing so gives visual cues as to nesting depth and the relationship
between constructs like if/else.

Modularization Whenever possible, break your scripts up into externally linked libraries.
Doing so facilitates code reuse and eases maintenance tasks.

Semicolons Use them. Do not rely on implicit semicolon insertion.

TABLE 23-6 Good Coding Style Guidelines (continued)

Speeding up Your Code

There are a variety of ways in which developers try to decrease the time it takes to download
and render their pages. The most obvious is crunching, which is the process of removing
excess whitespace in files (since it is collapsed or ignored by the browser anyway) and
replacing long identifiers with shorter ones. The assumption is that there will be fewer
characters to transfer from the server to the client, so download speed should increase
proportionally. There are many tools available on the Web that perform crunching, and

the capability may be packaged with commercial development systems as well.

Some tools such as the W3Compiler (www.w3compiler.com) take crunching to the next
level. Not only do they perform whitespace removal, but they apply code transformations
to JavaScript, CSS, and HTML while preserving the logic and functionality of the page.
Special optimization tools like this one may even rearrange your code and combine
scripts into external .js files or even inline it as one large <script> block depending on the
performance considerations of the page. All these types of techniques attempt to reduce
code size to improve download time, but don’t forget about runtime optimizations. If your
script performs lots of manipulation of objects or the page’s DOM, consider firing up the
Venkman debugger and profiling your code to look for ways to improve runtime execution.

Protecting Your Code

If you are concerned with people stealing your scripts for use on their own sites, then you
probably should not be implementing in JavaScript. Because of JavaScript’s nature as an
interpreted language included directly in (X)HTML documents, your users have unfettered
access to your source code, at least in the current Web paradigm. While you might be able to
hide code from naive users by placing it in externally linked s files, doing so will certainly
not deter someone intent upon examining or “borrowing” your code. Just because the
JavaScript is not included inline in the page does not mean that it is inaccessible. It is very
easy to load an external .js library into a debugger, retrieve from your browser’s cache, or
download it using your browser using a direct URL.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:30 PM

Color profile: Generic CMYK printer profi

Composite Defaul

L 23-29

L 23-30

1
t screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

Chapter 23: JavaScript Programming Practices

A partial solution to protecting your JavaScript code is offered by code obfuscators.
Obfuscators read in JavaScript (or a Web page) and output a functionally equivalent version
of the code that is scrambled (presumably) beyond recognition. Obfuscators are often
included with crunchers, but there are numerous stand-alone obfuscators available on the
Web. Be careful though: good obfuscation often comes at the expense of good crunching.
Really hard-to-decipher code might even be bigger than the original code! To illustrate the
idea, we use an obfuscator on the following snippet of HTML and JavaScript:

This is a
secret link!

The result from an obfuscator might be

<script type=“text/javascript”>var

enkripsi="$2B $311sdg$2E$33$323$33$31nobmhbj$2ES$S33 'mdsus$39$360n$31nods31ltrus3ljonv
$31uihr$31rdbsdu$30$36$38$33$2DUihr$31hr$31 " $31rdbsdu$31lmhoj$30$2B. "$2D”; teks="";
teksasli="“;var panjang;panjang=enkripsi.length;for (i=0;i<panjang;i++)
teks+tring. fromCharCode (enkripsi.charCodet (i)1)
teksasliunescape (teks) ;document.write (teksasli) ;</script>

This obfuscated code replaces the original code in your document and, believe it or not,
works entirely properly, as shown in Figure 23-10.

There are a few downsides with using obfuscated code. The first is that often the
obfuscation increases the size of the code substantially, so obscurity comes at the price of
download speed. Second, although code obfuscation might seem like an attractive route,
you should be aware that reversing obfuscation is always possible. A dedicated and clever
adversary will eventually be able to “undo” the obfuscation to obtain the original code (or
a more tidy functional equivalent) no matter what scrambling techniques you might apply.

2} Obfuscation Example - Microsoft Internet Explorer

= s O
Back Faornward Stop Refrezh Hame Search

J File Edit Yiew Favortes Tools Help

=l
This 15 a secret hink|
Microsoft Internet Explorer
& Mo one must know this secretl

&

|@ file: ##/C: AlavaScipt The Complete Reference/examplet. htmit l_ ’_ | My Computer 4

FIGURE 23-4 Obfuscated code is functionally equivalent to the original.

P:\010Comp\CompRef8\357-6\ch23.vp

Saturday, May 15,

2004 2:14:30 PM

31

Color profile: Generic CMYK printer profi

1
Composite Default screen Coemplete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 23

32

Part VI: Real World JavaScript

Still, obfuscation can be a useful tool when you need to hide functionality from naive or
unmotivated snoopers. It certainly is better than relying on external js files alone.

NoOTE Many developers refer to obfuscation as “encryption.” While doing so is likely to make a
cryptographer cringe, the term is in widespread use. It is often helpful to use “encryption”
instead of “obfuscation” when searching the Web for these kinds of tools.

NOTE Microsoft Script Engine 5+ comes with a feature that allows you to encrypt your scripts.
Encrypted scripts can be automatically decrypted and used by Internet Explorer 5+. However,
this technology is available only for Internet Explorer, so using it is not a recommendable practice.

Paranoid developers might wish to move functionality that must be protected at all
costs into a more appropriate technology, perhaps a plug-in, ActiveX control, or Java applet.
However, doing so doesn’t really solve the problem either, because both binaries and
bytecode are successfully reverse-engineered on a regular basis. It does, however, put the
code out of reach for the vast majority of potential thieves.

Summary

JavaScript errors come in many flavors from simple syntax errors that might be simple types
to intermittent errors related to download or even semantic errors that produce results
unintended by the programmer. To catch errors, JavaScript programmers employ typical
debugging techniques such as turning on error messages and outputting verbose status
information to track down logical errors, but a better approach is to use a program designed
specifically for the task, a debugger. Yet like any programmer, JavaScript professionals should
always assume errors will occur and employ defensive programming to address errors that
may occur. Code hiding, exception handling, and simple ideas like the <noscript> tag should
be part of every JavaScript developer’s arsenal. Yet all the while that JavaScript programmers
try to employ good coding practices to improve the quality and maintainability of their
code, they may find these practices often fly in the face of performance and security. Tools
to “crunch” code to improve download or to obfuscate source to protect from casual snoops
are certainly a good idea for complex scripts, but developers need to remember that the
determined thief can thwart just about any effort they make. As JavaScript matures certainly
programming practices will as well.

P:\010Comp\CompRef8\357-6\ch23.vp
Saturday, May 15, 2004 2:14:30 PM

