The

Refggnectee

Chapter 15

Image Effects:
Rollovers, Positioning,
and Animation

511

Wednesday, August 29, 2001 12:08:37 PM



Col or profile: Generic CWK printer profile i X
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

512 JavaScript: The Complete Reference

Starting first with the basic rollover or mouseover script that toggles images when
the user is hovering over them, we then proceed to more complicated rollover
forms, including target-based and Cascading Style Sheets (CSS)-based rollovers.
The manipulation of CSS-positioned regions is also discussed, with attention given
to visibility and positioning issues. Finally, we describe how to create basic animation
effects by using timers to move and change positioned objects and text. An emphasis
is placed on making all introduced effects as cross-browser compliant as possible.

In this chapter we explore the use of JavaScript to add flash and sizzle to web pages.

___ | Image Basics

We begin our discussion by presenting the basics of manipulating an image in a
Web page using the HTML <img> tag. Starting with Netscape 3 and later adopted
by Internet Explorer 4 and the DOM Level 1 standard, the images| ] collection was
added to the Document object. The collection contains Image objects as defined by
the <img> tag. This collection can be referenced numerically (document.imagesl[i]),
associatively (document.images[‘imagename’]), and directly (document.imagename).

Once you access a particular image, you will find that the properties for its object
correspond, as expected, to the attributes of the <img> tag as defined for HTML 4.
An overview of the common properties of the Image object (also known as the
HTMLImageElement under the DOM Level 1) beyond the common id, className,
style, and title properties is presented in Table 15-1.

Property Description

align Indicates the alignment of the image, usually
left or right.

alt The alternative text rendering for the image as set by
the alt attribute.

border The border around the image in pixels.

complete A Boolean value indicating if the image has
completely loaded.

Table 15-1. Image Object Properties

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:37 PM



Col or profile: Generic CMYK printer profil
Conmposite Default screen

eComplete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation

Property Description

height The height of the image defined as a pixel or
percentage value.

hspace The horizontal space around the image.

isMap Boolean value indicating presence of the ismap attribute,
which indicates the image is a server-side image map.
The useMap property is used more often today.

longDesc The value of the HTML 4 longdesc attribute, which
provides a more verbose description for the image than
the alt attribute.

lowsrc The URL of the “low source” image as set by the lowsrc
attribute. Under DOM Level 1, this is specified by
lowSrc property.

name The value of the name attribute for the image.

src The URL of the image.

useMap The URL of the client-side image map if the <img>
tag has a usemap attribute.

vspace The vertical space in pixels around the image.

width The width of the image in pixels or as a percentage value.

Table 15-1. Image Object Properties (continued)

The traditional Image object also supports onabort, onerror, and onload event
handlers. The onabort handler is invoked when the user aborts the loading of the
image, usually by hitting the browser’s stop button. The onerror handler is fired when
an error occurs during image loading. The onload handler is, of course, fired once the
image has loaded. Under modern browser implementations that support HTML 4
properly, you will also find onmouseover, onmouseout, onclick, and the rest of the
core events supported for Image. However, under Netscape 3 browsers, these would
not be supported. In addition, the Image object does not support any methods under
traditional JavaScript implementations, such as Netscape 3.

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:37 PM

513



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

514 JavaScript: The Complete Reference

The following example illustrates simple access to the common properties of
Image. A rendering of the example is shown in Figure 15-1.

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html|>
<head>
<title>JavaScript Image Object Test</title>
</head>
<body>
<img src="sample.gif" width="200" height="100"
name="imagel" id="imagel" align="Ileft"
alt="Test Image" border="0">
<br clear="all">
<hr>
<br clear="all">
<h1>Image Properties</h1>
<form name="imageForm" id="imageForm">
Left:
<input type="radio" name="align" id="align" value="Ileft" checked
onchange="document.imagel.align=this.value">
Right:
<input type="radio" name="align" id="align" value="right"
onchange="document.imagel.align=this.value"><br>
Alt:
<input type="text" name="alt" id="alt"
onchange="document.imagel.alt=this.value"><br>
Border:
<input type="text" name="border" id="border"
onchange="document.imagel.border=this.value"><br>
Complete:
<input type="text" name="complete" id="complete"><br>
Height:
<input type="text" name="height" id="height"
onchange="document.imagel.height=this.value"><br>
Hspace:
<input type="text" name="hspace" id="hspace"
onchange="document.imagel.hspace=this.value"><br>
Name:
<input type="text" name="name" id="name"><br>
Src:
<input type="text" name="src" id="src" size="40"

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:37 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 515

onchange="document.imagel.src=this.value"><br>
Vspace:
<input type="text" name="vspace" id="vspace"
onchange="document.imagel.vspace=this.value"><br>
Width:
<input type="text" name="width" id="width"
onchange="document.imagel.width=this.value">
</form>

<script language="JavaScript" type="text/javascript">

<l--
function populateForm()
{
if (document.imagel) && (document.imagel.complete))
{
with (document.imageForm)
{
alt.value = document.imagel.alt;
border.value = document.imagel.border;
complete.value = document.imagel.complete;
height.value = document.imagel.height;
name.value = document.imagel.name;
src.value = document.imagel.src;
vspace.value = document.imagel.vspace;
width.value = document.imagel.width;
if (document.imagel.align == 'left’)
align[0] = checked,; o
else if (document.imagel.align == 'right’) g
align[1] = checked; =
} S
} g
} =
3
window.onload = populateForm;
11-->
</script>
</body>
</html>

If you try this example under Netscape 3, you will find that it is not possible to
manipulate the properties of the Image object, except for the src attribute. This leads
to the first application of the Image object—the ubiquitous rollover button.

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:38 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

516 JavaScript: The Complete Reference

4} JavaScript Image Dbiject Test - Microsoft Internet Explorer

J File Edit “iew Favorter Tool: Help |

J @ Back » = - @ ot | @Search [3e] Favorites gHistor_l,l ||%v S w
=

Image Properties

Left: & Right ©

Al ITest Image

Border: |5

Cotnplete: ItFUB

Height: [100

Hapace: |

MName: Iimage1

Sre |fi|e:,.WC:EDOcuments%ZDand%ZDSeﬂingszh

Wepace: |U
Width: [200

ML

|@ Done I_ l_ |@ My Computer

Figure 15-1. /mage object properties

| Rollover Buttons

A common use of JavaScript is for page embellishment. One of the most common
embellishments is the inclusion of rollover buttons, a JavaScript feature that has been
available since Netscape 3. A rollover button is a button that becomes active when the
user positions the mouse over it. The button also can have a special activation state
when it is pressed. To create a rollover button, you first will need at least two, perhaps
even three images, to represent each of the button’s states—inactive, active, and
unavailable. A simple pair of images for a rollover button is shown here:

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:38 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 517

@@@E M

To add this rollover image to the page, simply use the <img> tag like you normally
would. The idea is to swap the image out when the mouse passes over the image and
switch back to the original image when the mouse leaves the image. By literally
swapping the value of the src attribute when the mouse is over the image, you can
achieve the rollover effect. With the following,

I <img src="imageoff.gif" name="myimage" id="myimage">
you might be tempted to try

<img src="imageoff.gif" name="myimage" id="myimage"
onmouseover="document.myimage.src="imageon.gif"
onmouseout="document.myimage.src="imageoff.gif"">

While this would work in modern browsers, under Netscape 4 you cannot capture
mouseover events on an image in this way, and in Netscape 3 you can’t capture them
at all. However, remember that an image can be surrounded by a link, so it is therefore
possible to use the Link object’s event handlers for control purposes. This short example
shows how rollovers work from a theoretical standpoint, assuming you had two images
called imageon.gif and imageoff.gif.

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html|>

<head>

<title>Quick and Dirty Rollovers</title>

<script language="JavaScript" type="text/javascript">

<l--

function mouseOn()

{

document.imagel.src = 'imageon.gif'

}

function mouseOff()

{

document.imagel.src = 'imageoff.qgif'

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:38 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

JavaScript: The Complete Reference

}
[-->

</script>

</head>

<body>

<a href="#" onmouseover="mouseOn()" onmouseout="mouseOff()">
<img name="imagel" id="imagel" src="imageoff.gif"

border="0" width="90" height="90"></a>

</body>

</html>

While this script will work under Netscape 3 (and better) browsers, you will find
that some older JavaScript-enabled browsers, such as Internet Explorer 3 and Netscape
2, do not support access to the images| ] collection. Thus, we should detect for support
before trying to modify an image. The easiest way to make sure the user is running
a browser that supports the document.images| ] collection is to use a conditional
statement:

if (document.images)
{

/l do image related code.

}

This statement determines whether or not the document.images exists. If the object
does not exist, document.images is undefined, so it evaluates to false when used in
a conditional statement. On the other hand, if the array is not undefined, it evaluates
to true in a conditional statement. You must be sure not to attempt to manipulate
document.images or an Image object unless document.images exists, because doing
so will cause a runtime error.

Even if the Image object is supported, we need to consider whether or not the images
that are being used in the rollover effect have been downloaded. If not, the user will see
broken images. Thus, we should try to preload images rather than hope that the images
are loaded before the mouse rolls over the image. The easiest way to do this is to create
an image element and set its source in the <head> of a document before the page loads.
To create an image, use the object constructor new:

I var variableName = new Image();

You should pass in the width and height to the constructor (in reality, it doesn’t make
much difference, particularly for our simple preloading goal):

I var imageName = new Image( width , height );

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:39 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 519

Once the object is created, set the src property so that the browser preloads
(downloads before it is actually required) the desired image:

I variableName.src =" URL of image ";

A rollover requires two images, so it is often a good idea to create both the on and
off states ahead of time. Be sure to make the images the same size, or you will see some
distortion under browsers, like Netscape 3 and 4, that cannot reflow a document easily
after page load.

Given this new information, a slightly cleaner version of the last rollover example,
with some object checking, is shown here:

<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html|>

<head>

<title>Cleaner Roll Code</title>

<script language="JavaScript" type="text/javascript">

<I--

if (document.images)

{
/Il preload images
var offimage = new Image(90,90); // for the inactive image
offimage.src = "imageoff.qgif";
var onimage = new Image(90,90); // for the active image
onimage.src = "imageon.gif";

}

function mouseOn()

{

if (document.images)
document.images.imagel.src = onimage.src;

c
&
=z
o
;
<
>
73
o
2
3

}

function mouseOff()
{
if (document.images)
document.images.imagel.src = offimage.src;
}
I -->
</script>
</head>

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:39 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

520 JavaScript: The Complete Reference

<body>

<a href="http://www.pint.com" onmouseover="mouseOn()"
onmouseout="mouseOff()">

<img src="imageoff.gif" name="imagel" id="imagel" border=
"0" width="90" height="90" alt=""></a>

</body>

</html>

This example is closer to what we need. One issue that arises is how to deal with
multiple images in a page with generalized rollover code. The key is naming the images
in a consistent manner, such as adding the word “On” or “Off” to the end of each
named image. We could then automatically compute what image we want by simple
evaluation of the name and the appropriate suffix. This is best illustrated in an example:

<script language="JavaScript" type="text/javascript">
<l--

if (document.images)

{

[* preload images */

var homeOn = new Image();
homeOn.src = "homeOn.gif";

var homeOff = new Image();
homeOff.src = "homeOff.gif";

var productsOn = new Image();
productsOn.src = "productsOn.gif";

var productsOff = new Image();
productsOff.src = "productsOff.gif";
}

function mouseOn(imgName)

{
if (document.images)
document[imgName].src = eval(imgName + "On.src");

}

function mouseOff(imgName)

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:39 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 521

{

if (document.images)
document[imgName].src = eval(iimgName + "Off.src");
}
I -->
</script>

Later on, somewhere in our HTML file we would have appropriately named the
images and links with onmouseover and onmouseout handlers to trigger the appropriate
parts of the script.

<a href="home.html" onmouseover="mouseOn(‘home")"

onmouseout="mouseOff('home")"><img src=

"homeOff.gif" height="50" width="100" name="home" id= "home"
border="0"

alt="Home"></a>

<br>

<a href="products.html" onmouseover="mouseOn('products")"
onmouseout="mouseOff('products’)"><img src=
"productsOff.gif" height="50" width="100" name="products" id="products"

border="0"
alt="Products"></a>
<br>
Given such a script, rollovers are limited only by one’s capability to copy-paste and &
keep names correct. However, be careful with too many images in your pages. You are g
almost doubling your download time with image rollovers! The complete rollover =
script is shown here. =
S
<!doctype html public "-//W3C//IDTD HTML 4.01 Transitional//EN" %
"http://www.w3.org/TR/html4/loose.dtd"> -
<html>
<head>

<title>Rollovers!</title>
<script language="JavaScript" type="text/javascript">
<l--

if (document.images)
{

[* preload images */

var homeOn = new Image();

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:39 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

522 JavaScript: The Complete Reference

homeOn.src = "homeon.gif";

var homeOff = new Image();
homeOff.src = "homeoff.gif";

var productsOn = new Image();
productsOn.src = "productson.gif";

var productsOff = new Image();
productsOff.src = "productsoff.gif";

}

function mouseOn(imgName)
{
if (document.images)
document[imgName].src = eval(imgName + "On.src");

}

function mouseOff(imgName)
{

if (document.images)

document[imgName].src = eval(iimgName + "Off.src");

}
I -->
</script>
</head>
<body>
<a href="home.htm" onmouseover="mouseOn(‘home")"
onmouseout="mouseOff('thome")">
<img src="homeoff.gif" name="home" id="home" border=
"0" width="90" height="90" alt=""></a><br>

<a href="products.htm" onmouseover=
"mouseOn(‘products’)" onmouseout="mouseOff('products’)">
<img src="productsoff.gif" name="products" id=

"products" border="0" width="90" height="90" alt=""></a><br>
</body>

</html>

Because rollovers are so common on Web sites, there are many tools (such as
Macromedia’s Dreamweaver and Fireworks) that can create the code instantly when
provided with two images. Notice that the dialog shown here from Dreamweaver
requests the items that we used in our script.

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:39 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 523

Inzert Rollover Image

K

Image Mame: IImage1
Original Image: | Erowse...l
Rollover Image: | Browse...l

¥ Prelnad Rollover |mage

When Clicked, Go To URL: | Browse... |

Cancel

Help

Pl

Extending Rollovers

Once the basic rollover is mastered, the next thing to resolve is how to extend the script.
Usually the method involves manipulating multiple images at once or improving the
rollover to use less bandwidth. For example, rollovers can reveal text or imagery
someplace else on the screen as the user moves over a link. A script can be written to
reveal a scope note as well as change the state of the link. The following markup and
JavaScript illustrate how this would work:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Targeted Rollovers</title>
<script language="JavaScript" type="text/javascript">
<l--
[* preload all images */
if (document.images)
{
abouton = new Image(147, 29);
abouton.src = "abouton.gif"
aboutoff = new Image(147, 29);
aboutoff.src = "about.gif"

blank = new Image(130, 127);
blank.src = "blank.gif"

description1 = new Image(130, 127);
descriptionl.src = "description.gif"

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:40 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

524 JavaScript: The Complete Reference

function On(imgName,description)

{

if (document.images)
{
imgOn = eval(imgName + "on.src");
document.images[imgName].src = imgOn;
document.images.descriptionregion.src= description.src;
}
}

function Off(imgName)

{

if (document.images)
{
imgOff = eval(imgName + "off.src");
document.images[imgName].src = imgOff;
document.images.descriptionregion.src= "blank.gif";
}

}
Il -->

</script>
</head>
<body>

<a href="about.htm"
onmouseover="0On(‘about',descriptionl);
window.status="Company'; return true"
onmouseout="0ff('about);">

<img src="about.qgif" border="0" alt="About" name="about" id="about"
width="159" height="57"></a>

&nbsp;&nbsp;&nbsp;

<a href="#">

<img src="blank.gif" name="descriptionregion" id="descriptionregion"
width="328" height="84" border="0" alt=""></a>

</body>
</html>

Figure 15-2 shows the rollover code in action.
Generally, designers are encouraged to use rollovers that reveal extra information
or to change the look of an object. Imagine rolling over an image of color samples and

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:40 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 525

43 Targeted Rollovers - Microzoft Internet Explorer

S T >
Back Fomward Stop Refresh

J Eile  Edit Miew Faworites  Tool:  Help

A

/] Targeted Rollovers - Microsoft Internet Explorer

] + = [~]

- -

Back Forward Stop Refresh

J Ele Edit Wiew Favortes Tools  Help

Find out all about our glorious

P — history and read bios of our
— | fabulous management team.

Ml

|@ Compary ’_|_|Q Internet

Figure 15-2. Rollovers can reveal descriptive text

having the image of a car change. That’s an easy application of rollovers. However,
always remember that advanced rollover applications can be troublesome because
they require numerous images. Fortunately, using style sheets, lightweight rollover
messages can be built, as we’ll see later in the chapter in the section “Applied DHTML.”
For now, let’s cover the syntax required to implement more complex CSS-based
visual effects.

___| cSs Positioning

With CSS we have the possibility to modify the look and feel of a Web page in
dramatic fashion. With CSS properties, we can control font-sizes (<h1 style="font-size:
56pt”>Test</h1>), line spacing (<p style="line-height: 150%"”>), and a variety of other
formatting properties (<span style="color: red; text-decoration: underline”>). An
important extension made to CSS Level 1 even allows for the positioning of objects on
the screen. This extension, known as CSS-P (P obviously for positioning), was quickly
adopted by the 4.x generation browsers—despite the incomplete support by these
browsers of many CSS properties.

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:40 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

526 JavaScript: The Complete Reference

The power of CSS positioning is dramatic and allows for an HTML element to be
positioned at any arbitrary pixel coordinate on the screen. Related CSS properties allow
for sizing, visibility, and other stylistic changes. Table 15-2 presents a short summary of
these properties.

CSS Property Description

position Defines the type of positioning used for an element:
static (default), absolute, relative, fixed, or inherit. Most
often absolute is used to set the exact position of an
element regardless of document flow.

top Defines the position of the object from the top of the
enclosing region. For most objects, this should be
from the top of the content area of the browser
window.

left Defines the position of the object from the left of the
enclosing region, most often the left of the browser
window itself.

height Defines the height of an element. With positioned
items, a measure in pixels (px) is often used, though
others like percentage (%) are also possible.

width Defines the width of an element. With positioned
items, a measure in pixels (px) is often used.

clip A clipping rectangle like clip: rect (top right bottom
left) can be used to define a subset of content that
is shown in a positioned region as defined by the
rectangle with upper-left corner at (left,top) and
bottom-right corner at (right,bottom). Note that the
pixel values of the rectangle are relative to the
clipped region and not the screen.

visibility Sets whether an element should be visible. Possible
values include hidden, visible, and inherit.

z-index Defines the stacking order of the object. Regions
with higher z-index number values stack on top of
regions with lower numbers. Without z-index, the
order of definition defines stacking, with last object
defined the highest up.

Table 15-2. Common CSS Properties Related to Positioning

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:41 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 527

The following simple example demonstrates some of the CSS rules from Table 15-2
being used to position three regions on the screen. A rendering of this example shown
in four different browsers is presented in Figure 15-3.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<title>CSS Positioning Basics</title>
<style type="text/css">
<I--
#layerl {position: absolute;
top: 40px; left: 120px;
z-index: 2;
height: 50px; width: 50px;
color: white; background-color: blue;}

#layer2 {position: absolute;
top: 20px; left: 80px;
z-index: 1;
height: 150px; width: 150px;
color: black; background-color: orange;}

#layer3 {position: absolute;
top: 75px; left: 40px;
z-index: 3;

height: 25px; width: 100px; S

color: black; background-color: yellow;} g

-—> o
<[style> J<’
B

</head> @
<body> E
3

<div id="layer1">This is layer 1</div>
<div id="layer2">This is layer 2</div>
<div id="layer3">This is layer 3</div>

</body>
</html>

A few comments are required for the previous example. First, notice that in the
rendering in Figure 15-3 that differences occur visually even in CSS-aware browsers.
Most of these differences revolve around the fact that Netscape 4 actually favors a

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:41 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

528 JavaScript: The Complete Reference

/8)ICSS Positioning Basics - Microsoft Intemet Explorer B[] I3 |5 _axl| 3@ _[alx

Fie Edt View Favoies Tools Help E Fle Edit View Search Go Bookmarks Tasks Help

& Back - D 1) 4| QSeach [iFavartes ElH Y B A 4 = ﬁ,m @ - @ i

= T gt | OTEN (YT CmE i
g 2 T ¥ Bockmaks A Locaion:[ig3him -] €01 What'sRelated | [T N scape | N T N
T Alnstant Messsge B webMal [H Calendar [ Radio (3 Pe
! This is layer 2
This is layer 3 This is L
by l
! This is layer 3
This is layer 3
i
Ej = ]
&] Done k3 My Computer = == D[ e Y AR ES N2 PRE[ X [E/[E| [ Busincssa Techa Funa lnteractd
(1] =10l x|
ol =181 x|
A ¥ -
dada-& i | % ~ 9.99% gy
New Pint Hofist Back  Reload Home: visa L4 Intro Ongoing
o [ B 2 [fle:/ Aocalhost/C:ADOCUME ~1/THOMAS ™1 POW /D esktop/figd Him =] &~ [<Search with Google here> ~l& - [z -
This is layer 2
|
This is layer 3

[ hitpevmons ryepera coms | 2] €SS Pasitioning Basics

Figure 15-3. CSS-positioned regions under Internet Explorer 5, Navigator 4,
Netscape 6, and Opera 5.

proprietary tag <layer> over positioned regions. Second, if a browser does not support
CSS positioning or the facility is off, the results can be catastrophic, as shown in Figure 15-4.
Lastly, notice the heavy use of the <div> tag. The div element has no particular rendering
under standard HTML 4, other than causing a return, since it is a block element. Further,
the tag has only the basic meaning of being a grouping of items; thus, it is very useful
as a generic container to insert content into and apply style to. While you could bind
positioning to other tags, the <div> is the safest bet for cross-browser support.

When an arbitrary region is positioned using CSS, we will refer to that region as
a layer. Do not confuse this nomenclature with the proprietary HTML tag <layer>,
supported only in Netscape 4. This historically troublesome tag has been phased out,
and it won’t be a moment too soon before we can stop supporting its syntax, which is
discussed next.

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:41 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 529

+~ Netscape - [C55 Positioning Basics]
File Edit “iew Go Bookmarks Options  Directory Window  Help
w o || @ | | 2 g | @
Eack Forward Huome Fieload Irmages Open Prink Find Stop
what's Mew? | Wwhat's Cool? | Destinations | NetSearchl People | Soflwalel
This 15 layer 1
This 1z layer 2
This iz layer 3
=@l [Document: Done | =7 4
Figure 15-4. CSS support is required for correct rendering.

Netscape 4 Layers

Netscape 4 provides poor support for CSS51. However, it does support the <layer> tag,
which provides the equivalent of positioned regions in style sheets. For example,

<layer name="test" pagex="100" pagey="100" width="100" height="50"
bgcolor="#ffff99">

This is a layer!
</layer>

produces the same region as

<div id="test" style="position: absolute; top:

100px; left: 100px; width: 100px; height: 50px; background-color: #ffff99">
This is a layer!

</div>

On the basis of the previous example, you might guess that you have to include both
<div> and <layer> tags in a document in order to achieve proper layout. Fortunately,

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:42 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

530 JavaScript: The Complete Reference

just before the release of version 4 of its browser, Netscape adopted support for
positioned <div> tags. Note that this support is actually through a mapping between
<div> regions and Layer objects; in fact, to access a positioned <div> object under
Netscape 4, you use the layers| ] collection. To demonstrate this, consider that to
access a region defined by

<div id="region1" style="position: absolute;
top: 100px; left: 100px; width: 100px; height:
100px; background-color: #ffff99">

| am positioned!
</div>

we would use document.layers[‘region1’]. However, once it’s accessed, we
unfortunately cannot modify the style property of the region because Netscape 4

does not dynamically reflect changes into the page. Yet we can modify important
values, such as position, size, or visibility under Netscape 4. For example, to change
the visibility we would use document.layers[‘region1’].visibility and set the property
to either hide or show. The various modifiable aspects of a positioned region map
directly to the properties of the Layer object. The most commonly used properties

for this object are shown in Table 15-3.

Property Description

background The URL of the background image for the layer.
bgColor The background color of the layer.

clip References the clipping region object for the layer.

This object has properties top, right, bottom, and
left that correspond to normal CSS clipping
rectangles as well as width and height, which
can be used similarly to normal width and height

properties in CSS.
document A reference to the Document object of the
current layer.
left The x-coordinate position of the layer.
name The name of the layer.

Table 15-3. Useful Layer Object Properties

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:42 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 531

Property Description
pageX The x coordinate of the layer relative to the page.
pageY The y coordinate of the layer relative to the page.
src The URL to reference the layer’s content when

it is not directly set within the <layer> tag itself
top The y coordinate position of the layer.
visibility References the current visibility of the layer. Values

of show and hide for <layer> are equivalent to visible
and hidden under CSS. Later versions of Netscape 4
map the two values so either can be used.

window Reference the Window object containing the layer.
X The x coordinate value for the layer.

y The y coordinate value for the layer.

zIndex Holds the stacking order of the layer.

Table 15-3. Useful Layer Object Properties (continued)

Of course, <layer> is a proprietary tag and is not supported outside Netscape 4. In
fact, in the 6.x release of the browser, Netscape removed support for this tag. We'll see
in the next few sections how Internet Explorer and DOM-compatible browsers access
positioned regions.

| For the best support under Netscape 4 browsers, you may have to rely on <layer>

_ syntax in conjunction with positioned <div> regions.

| Nested layers can add some significant trouble programmatically, and they will require
us to look within the layers| ] collection of the current layer to find the required layer.

Internet Explorer 4 Layers

As mentioned in Chapter 9, Internet Explorer exposes all objects in a page to scripts via
the all[ ] collection. So, to access a positioned region defined by

<div id="regionl" style="position: absolute; top: 100px; left: 100px; width:
100px; height: 100px; background-color: #ffff99">

| am positioned!
</div>

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:42 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

532

JavaScript: The Complete Reference

under Internet Explorer 4 (and greater), you would use document.all[‘region1’], or
document.all.region1, or simply regionl. Once the particular object was accessed,
we would manipulate its presentation using its Style object. For example, to set the
background color of the region to orange using the CSS property background-color,
we would use document.all[‘region1’].style.backgroundColor = “orange’ or simply
regionl.style.backgroundColor="orange’. To set visibility, we would use
regionl.style.visibility and set the value to either visible or hidden.

The mapping of CSS style properties to JavaScript Style object properties was
presented in Chapter 10, but recall that, in general, you take a hyphenated CSS
property and uppercase the first letter of all the hyphen-separated terms except the
first. For example, the CSS property text-indent becomes textIndent under IE and
DOM-compatible JavaScript. The next section reflects a slight variation of the scheme
presented here, since the standard DOM supports different syntax to access a positioned
region. Fortunately, since Internet Explorer 5 and beyond support many DOM features,
we can really use either syntax interchangeably.

DOM Errors

Accessing positioned regions under a DOM-compliant browser is nearly as

easy as using Internet Explorer’s all[ ] collection. The primary method is to use
document.getElementBylId(). Given our sample layer called ‘region1’, we would use
document.getElementByld(‘region1’) to retrieve the layer, and then we could set its
visibility or other style-related properties via its Style object (in a manner similar to
how we would do this in Internet Explorer). For example, to hide an object, we would
use document.getElementByld(‘region1’).style.visibility="hidden’. Of course, the
question then arises: How do we get and set style properties related to layer positioning
in the same way across all browsers? The next section presents one possible solution
to this challenge.

Cross-Browser Layers

As we have seen throughout this book, significant differences exist in technology
support between the popular Web browsers. For some developers, authoring for
one browser (Internet Explorer) or the standard (DOM) has seemed the best way to
deal with these differences. However, a better solution is to address cross-browser
compatibility head-on and write markup and script that works under any browser
capable of producing the intended result. This section explores this approach by
creating a cross-browser layer library.

From the previous section, we can see that for layer positioning and visibility
we will need to support three different technologies:

®m Netscape 4 proprietary <layer> tags
m Internet Explorer 4+ all[ ] collections with positioned <div> tags

® DOM compatible browsers with positioned <div> tags

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:43 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 533

Given this relatively limited set of approaches, we can create a set of JavaScript
routines to change visibility and move, modify, size, and set the contents of positioned
regions fairly easily. To create such a library, we need to first determine what type of
approach a browser supports. The easiest way to do this is by looking at the Document
object. If we see a layers] ] collection, we know the browser supports Netscape 4 layers.
We can look at the all[ ] collection to sense if the browser supports Internet Explorer’s all[ ]
collection syntax. Lastly we can look for our required DOM method getElementById()
to see if we are dealing with a DOM-aware browser. The following statements show
how to set some variables indicating the type of browser we are dealing with:

(document.layers) ? layerobject=true : layerobject=false;
(document.all) ? allobject = true: allobject = false;
(document.getElementByld) ? dom = true : dom = false;

Once we know what kind of layer-aware browser we are dealing with, we might
define a set of common functions to manipulate the layers. We define the following
layer functions to handle common tasks:

function hide(layerName) { }

function show(layerName) { }

function setX(layerName, x) { }

function setY(layerName, y) { }

function setZ(layerName, zIindex) { }

function setHeight(layerName, height) { }

function setWidth(layerName, width) {}

function setClip(layerName, top, right, bottom, left) { }
function setContents() { }

These are just stubs that we will fill out shortly, but first we will need one special
routine in all of them to retrieve positioned elements by name, since each approach
does this slightly differently.

function getElement(layerName, parentLayer)
{
if(layerobject)
{
parentLayer = (parentLayer) ? parentLayer : self;
layerCollection = parentLayer.document.layers;
if (layerCollection[layerName])
return layerCollection[layerName];

/* look through nested layers */

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:43 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

534 JavaScript: The Complete Reference

for (i=0; i < layerCollection.length;)
return(getElement(layerName, layerCollection[i++]));

}

if (allobject)
return document.all[layerName];
if (dom)
return document.getElementByld(layerName);

Notice the trouble that the possibility of nested <layer> or <div> tags under
Netscape causes. We effectively have to look through the nested layers recursively
until we find the object we are looking for or have run out of places to look.

Once a positioned element is accessed, we can then try to change its style.

For example, to hide and show a positioned region we might write:

function hide(layerName)

{
var theLayer = getElement(layerName);
if (layerobject)
theLayer.visibility = 'hide";
else
theLayer.style.visibility = *hidden’;
}
function show(layerName)
{
var theLayer = getElement(layerName);
if (layerobject)
theLayer.visibility = 'show’;
else
theLayer.style.visibility = 'visible';
}

The other routines are similar and all require the simple conditional detection of the
browser objects to work in all layer-capable browsers. Of course, there are even more
issues than what has been covered so far. Under Opera browsers, we need to use the
pixelHeight and pixelWidth properties to set the height and width of the layer. In order
to detect for the Opera browser, we use the Navigator object to look at the user-agent
string, as discussed in Chapter 17. Here we set a Boolean value to indicate whether we
are using Opera by trying to find the substring “opera” within the user-agent string.

I opera = (navigator.userAgent.toLowerCase().indexOf('opera’) |= -1);

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:43 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 535

Once we have detected the presence of the browser, we can write cross-browser
routines to set height and width, as shown here:

[* set the height of layer named layerName */
function setHeight(layerName, height)
{

var theLayer = getElement(layerName);

if (layerobject)
theLayer.clip.height = height;
else if (opera)
theLayer.style.pixelHeight = height;
else
theLayer.style.height = height+"px";
}

[* set the width of layer named layerName */
function setWidth(layerName, width)
{

var theLayer = getElement(layerName);

if (layerobject)
theLayer.clip.width = width;
else if (opera)
theLayer.style.pixelWidth = width;
else
theLayer.style.width = width+"px";
}

The same situation occurs for positioning with Opera, as it requires the use of pixelLeft
and pixelTop properties rather than simply left and top to work. See the complete library
for the function for setting position that is similar to the previous example.

We must also take into account some special factors when we write content to a
layer. Under Netscape 4, we use the Document object methods like write() to rewrite
the content of the layer. In Internet Explorer and Netscape 6, we can use the innerHTML
property. However, under a strictly DOM-compatible browser, life is somewhat
difficult, since we would have to delete all children from the region and then create
the appropriate items to insert. Because of this complexity and the fact that DOM
browsers tend to support innerHTML, we punt on this feature. This leaves Opera out,
though we wrote the code in such a manner that simply nothing happens rather than
an error message being displayed.

function setContents(layerName, content)

{

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:43 PM



Col or profile: Generic CWK printer profile i X
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

536 JavaScript: The Complete Reference

var theLayer = getElement(layerName);

if (layerobject)
{
theLayer.document.write(content);
theLayer.document.close();
return;

}

if (theLayer.innerHTML)
theLayer.innerHTML = content;

We skipped presenting a few routines, but their style and usage follow the ones
already presented. The complete layer library is presented here:

[* layerlib.js: Simple Layer library with basic
compatibility checking */

[* detect objects */

(document.layers) ? layerobject=true : layerobject=false;
(document.all) ? allobject = true: allobject = false;
(document.getElementByld) ? dom = true : dom = false;

[* detect browsers */
opera=navigator.userAgent.toLowerCase().indexOf(‘opera’)!=-1;

[* return the object for the passed layerName value */
function getElement(layerName,parentLayer)

{

if(layerobject)
{

parentLayer = (parentLayer)? parentLayer : self;

layerCollection = parentLayer.document.layers;

if (layerCollection[layerName])
return layerCollection[layerName];

/* look through nested layers */

for(i=0; i < layerCollection.length;)
return(getElement(layerName, layerCollection[i++]));

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:44 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 537

if (allobject)
return document.all[layerName];

if (dom)
return document.getElementByld(layerName);

}

/* hide the layer with id = layerName */
function hide(layerName)

{
var theLayer = getElement(layerName);
if (layerobject)
theLayer.visibility = 'hide";
else
theLayer.style.visibility = 'hidden’;
}

[* show the layer with id = layerName */
function show(layerName)

{
var theLayer = getElement(layerName);
if (layerobject)
theLayer.visibility = 'show’;
else
theLayer.style.visibility = 'visible";
) 7
5
/* set the x-coordinate of layer named layerName */ =
function setX(layerName, x) §
{ 8
var theLayer = getElement(layerName); )
if (layerobject) 3
theLayer.left=x;
else if (opera)
theLayer.style.pixelLeft=x;
else
theLayer.style.left=x+"px";
}

/* set the y-coordinate of layer named layerName */

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:44 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

538 JavaScript: The Complete Reference

function setY(layerName, y)

{
var theLayer = getElement(layerName);
if (layerobject)
theLayer.top=y;
else if (opera)
theLayer.style.pixelTop=y;
else
theLayer.style.top=y+"px";
}

[* set the z-index of layer named layerName */
function setZ(layerName, zIndex)

{
var theLayer = getElement(layerName);
if (layerobject)
theLayer.zIindex = zIndex;
else
theLayer.style.zIndex = zIndex;
}

[* set the height of layer named layerName */
function setHeight(layerName, height)

{
var theLayer = getElement(layerName);
if (layerobject)
theLayer.clip.height = height;
else if (opera)
theLayer.style.pixelHeight = height;
else
theLayer.style.height = height+"px";
}

[* set the width of layer named layerName */
function setWidth(layerName, width)

{

var theLayer = getElement(layerName);

if (layerobject)

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:44 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 539

theLayer.clip.width = width;
else if (opera)
theLayer.style.pixelWidth = width;
else
theLayer.style.width = width+"px";

}

/* set the clipping rectangle on the layer named layerName
defined by top, right, bottom, and left */
function setClip(layerName, top, right, bottom, left)

{

var theLayer = getElement(layerName);

if (layerobject)
{
theLayer.clip.top = top;
theLayer.clip.right = right;
theLayer.clip.bottom = bottom;
theLayer.clip.left = left;
}
else
theLayer.style.clip = "rect
("+top+"px "+right+"px "+" "+bottom+"px "+left+"px )";

}

/* set the contents of layerName to passed content*/
function setContents(layerName, content)

{

var theLayer = getElement(layerName);

if (layerobject)
{

c
e
=z
o
5
<
>
73
o
2
3

theLayer.document.write(content);
theLayer.document.close();
return;

}

if (theLayer.innerHTML)
theLayer.innerHTML = content;

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:44 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

540 JavaScript: The Complete Reference

We might save this library as “layerlib.js” and then access it in an example document
like this one:

<IDOCTYPE HTML PUBLIC "-//W3C//[IDTD HTML 4.01 Transitional//EN"
"http://mww.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<title>Cross Browser Layer Tester</title>

<script language="JavaScriptl.2" src="layerlib.js"></script>

</head>

<body>

<div id="regionl" style="position: absolute; top:

10px; left: 300px; width: 100px; height:

100px; background-color: #ffff99; z-index: 10;" >
| am positioned!

</div>

<div id="region2" style="position: absolute; top:
10px; left: 275px; width: 50px; height:
150px; background-color:#33ff99; z-index: 5;">

Fixed layer at z-index 5 to test z-index
</div>

<br><br><br><br><br><br>
<hr>
<form name="testform" id="testform">

Visibility:
<input type="button" value="show" onclick="show('regionl’)">
<input type="button" value="hide" onclick="hide(‘'regionl1’)">

<br><br>

X: <input type="text" value="300" name="x" id="x" size="4" >
<input type="button" value="set"
onclick="setX('regionl',document.testform.x.value)">

Y: <input type="text" value="10" name="y" id="y" size="4" >
<input type="button" value="set"
onclick="setY('regionl',document.testform.y.value)">

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:44 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 541

Z: <input type="text" value="10" name="z" id="z" size="4" >
<input type="button" value="set"

onclick="setZ('regionl',document.testform.z.value)">

<br><br>

Height: <input type="text" value="100" name=
"height" id="height" size="4">

<input type="button" value="set"
onclick="setHeight('region1',document.testform.height.value)">

Width: <input type="text" value="100" name=
"width" id="width" size="4">

<input type="button" value="set"
onclick="setWidth(‘region1',document.testform.width.value)">
<br><br>

Clipping Rectangle:

Top: <input type="text" value=

"0" name="top" id="top" size="4">

Left: <input type="text" value=

"0" name="left" id="left" size="4">

Bottom: <input type="text" value=

"100" name="bottom" id="bottom" size="4">

Right: <input type="text" value="100" name=
"right" id="right" size="4">

<input type="button" value="set"
onclick="setClip('region1',document.testform.top.value,
document.testform.right.value, document.testform.bottom.value,
document.testform.left.value)">

<br><br>

<input type="text" name="newcontent" id=

"newcontent" size="40" value="l am positioned!">

<input type="button" value="set content"
onclick="setContents('regionl',document.testform.newcontent.value)">
</form>

</body>

</html>

c
&
=z
o
;
<
>
73
o
2
3

A rendering of the library and example in action is shown in Figure 15-5.

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:44 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

542 JavaScript: The Complete Reference

/3 Cross Browser Layer Tester - Microsoft Internet Explorer
= " = g & it @ E=| i
Back Faonward Stop Refresh Home Search Favorites
J File Edit “iew Favoites Took Help
Fixed =
I have been lal;{:r i
|
lbiirged] z-index
5 to test
z-index
Visibiity; Show | hide |
wlis set|vfen set|zio S_etl
Height B0 set| widm: [100 set]
Clipping Fectangle: Top: IU Left: IU Bottom: |1 00 Right: |1 0o S_Etl
|I hawve been changed! set content |
=
[&] Done l_’_|@ Intermet y
Figure 15-5. Cross-browser layer tester

You might encounter problems under Netscape 4 if you position the layer to cover
the form elements in the page. You also may encounter a resize bug that causes the
page to lose layout on window resize. We can solve the latter problem by adding a
somewhat clunky fix that reloads the page every time it is resized. It is presented here
for readers to add to their library as a fix for this strictly Netscape 4 problem.

/* Reload window in Nav 4 to preserve layout when resized */
function reloadPage(initialload)
{
if (initialload==true)
{
if ((navigator.appName=="Netscape") &&
(parselnt(navigator.appVersion)==4))

{

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:45 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

|

Chapter 15: Image Effects: Rollovers, Positioning, and Animation

[* save page width for later examination */
document.pageWidth=window.innerWidth;
document.pageHeight=window.innerHeight;

/* set resize handler */
onresize=reloadPage;

}
else if (innerWidth!=document.pageWidth ||

innerHeight!=document.pageHeight)
location.reload();

}

[* call function right away to fix bug */
reloadPage(true);

In the final examination, the harsh reality of DHTML libraries like the one
presented here is that minor variations under Macintosh browsers and the less common
JavaScript-aware browsers (such as Opera) can ruin everything. The perfect application
of DHTML is certainly not easily obtained, and significant testing is always required.
The next section explores applied DHTML and will show some of these issues in action.

Applied DHTML

This section provides a brief introduction to some other DHTML effects that are
possible using the layer library (layerlib.js). These examples should work under the
common browsers from the 4.x generation on. However, because of bugs with clipping
regions, few of the examples will work under Opera without modification.

Simple Transition

With positioned layers, you can hide and show regions of the screen at any time. Imagine
putting colored regions on-top of content and progressively making the regions smaller.
Doing this would reveal the content in an interesting manner, similar to a PowerPoint
presentation. While we’ll see in Chapter 23 that you can create such transitions easily
under Internet Explorer, this effect should work in most modern browsers. The code
for this effect is shown here, and its rendering is shown in Figure 15-6.

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html|>

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:45 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

544 JavaScript: The Complete Reference

<head>

<title>Wipe Out!</title>

<style type="text/css">

<I--

.intro { position:absolute;
left:0;
top:0;
layer-background-color:red;
background-color:red;
border:0.1px solid red;
z-index:10; }

#message { position: absolute;
top: 50%;
width: 100%:;
text-align: center;
font-size: 48pt;

color: green;
z-index: 1;}
>
<[style>
<script language="JavaScript1.2" src="layerlib.js"></script>
</head>
<body>

<div id="leftLayer" class="intro"></div><div id="rightLayer"
class="intro"></div>

<div id="message">JavaScript Fun</div>

<script language="JavaScript1.2">
<l--

var speed = 20;

/* calculate screen dimensions */
if (window.innerWidth)
{
theWindowWidth = window.innerWidth;
theWindowHeight = window.innerHeight;
}
else if (document.body)
{
theWindowWidth = document.body.clientWidth;
theWindowHeight = document.body.offsetHeight;

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:45 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 545

[* cover the screen with the layers */
setWidth('leftLayer’, parselnt(theWindowWidth/2));
setHeight('leftLayer’, theWindowHeight);
setX('leftLayer',0);

setWidth(‘rightLayer', parselnt(theWindowWidth/2));
setHeight('rightLayer', theWindowHeight);
setX(‘rightLayer', parselnt(theWindowWidth/2));

clipright = 0;
clipleft = parselnt(theWindowWidth/2);

function openlt()

{

window.scrollTo(0,0)

clipright+=speed;
setClip(‘'rightLayer',0,theWindowWidth,
theWindowHeight,clipright);

clipleft-=speed;
setClip('leftLayer',0,clipleft,theWindowHeight,0);
3
2
if (clipleft<=0) g
clearinterval(stoplt) s
) 8
)
function doTransition() 3
{
stoplt=setinterval("openlt()",100)
}

window.onload = doTransition

1-->
</script>
</body>
</html>

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:45 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

546 JavaScript: The Complete Reference

a Wipe Out! - Microzoft Internet Explorer

J File Edit “iew Faworter Toolz  Help ‘

J $Back ~ = - @) ot | @) Search 3 Favorites &7 History |%v =] - X

Ld

|@ Daone ’_ I_ | ty Computer y

a Wipe Out! - Microsoft Internet Explorer
J File Edit ‘“iew Favontez Toolz  Help |

s Back ~ = - @J e | @Search (3] Favorites @Hmtur}u | % = . . »

.VaS cript Fl

|@ Daone I_ l_ |. ty Computer y:

a Wipe Out! - Microsoft Internet Explorer

J File Edit “iew Favoites  Tool:  Help |
| wBack + = - @ [2] 4| DSeach [GFavaites (HHitoy |- S W - 5] @
E
JavaScript Fun
|@ Done l_l_l My Computer v

Figure 15-6. A simple DHTML based page transition

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:46 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 547

A point of interest here is the setInterval(code, time) method of the Window object,
which is used to perform the animation. The basic use of this method, which is fully
presented in Chapter 17, is to execute some specified string code every time milliseconds.
To turn off the interval, you clear its handle, so that if you have anlnterval = setInterval
(“alert(hi’)”, 1000), you would use clearInterval(anlnterval) to turn off the annoying alert.

Second-Generation Image Rollovers

The next example solves a problem with rollovers, again using clipping regions. Recall
that the major drawback of rollovers is the heavy download expense required to achieve
the effect. For example, for a simple two-state rollover for a menu of eight buttons, you
would need a total 16 images, one for each state. If you add a depressed state, it rises to
24. Using CSS positioning, it is possible to create a menu of graphic rollover buttons
using only two images.

To prepare the effect, first create one large image of all buttons in the menu in their
on state and one large image of all buttons in their off state, as shown here.

Button.®* -
BuMOn 2  dan
Button.3 3
Buttond .- 3

In this case, we named these all.gif and allon.gif. Next, create an image map for the
image. Now we can use CSS positioning properties to put the two images in the document
right on top of each other—except the allon.gif image will be hidden. Next we’ll write a
script so that as the user passes over the image, a portion of the allon.gif will be revealed.
The key is using a clipping path to cut out the area of the image we want to show. Since
we used an image map on top of the image, we have the clipping paths already. We
used our layer library (layerlib.js) from the previous section to accomplish our task.
The code and markup below illustrate the advanced rollovers in action:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:46 PM



Col or profile: Generic CWK printer profil

Conposite Default screen e(:omplete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

548 JavaScript: The Complete Reference

<title>Rollovers Generation 2</title>
<style type="text/css">
<l--

#menu {position: relative }
#menuoff {position: absolute; top: 0; left: O; }
#menuon {position: absolute; top: 0; left: O; visibility:hidden;}
-->
</style>
<script language="JavaScript1.2" src="layerlib.js"
type="text/javascript"></script>
<script language="JavaScript1.2" type="text/javascript">
<I--
cssRollCapable = (allobject || layerobject || dom) ? 1 : 0;

[* clipRegion object constructor */
function clipRegion(left,top,right,bottom)
{

this.left = left;

this.top = top;

this.right = right;

this.bottom = bottom;

if (cssRollCapable)
{
[* create clipping regions */
var cliparray = new Array();

cliparray[0] = new clipRegion(3,3,93,33);
cliparray[1] = new clipRegion(3,41,93,71);
cliparray[2] = new clipRegion(3,80,93,110);
cliparray[3] = new clipRegion(3,121,93,151);

function rollover(region,turnon)

{

[* bailout if not possible for level 2 rollovers */
if (('cssRollCapable) || (opera))
return;

if (turnon)

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:46 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 549

{

setClip("menuon”, cliparray[region].top,
cliparray[region].right, cliparray[region].bottom,
cliparray[region].left)
show("menuon");
}
else
hide("menuon”);

}

1-->
</script>
</head>
<body>

<div id="menu">

<div id="menuoff">

<img src="alloff1.gif" width="98" height="158" border="0"

usemap="#buttons" alt="">

</div>

<div id="menuon">

<script language="JavaScript1.2" type="text/javascript">

<I--

document.write('<img src="allon1.gif" width="95" height=

"158" border="0" usemap="#buttons">");

/l-->

</script>

</div>
</div>

<map name="buttons">

<area shape="rect" alt="Button 1" coords="3,3,93,33"
href="javascript:alert('button1');" onmouseover="rollover(0,true)"
onmouseout="rollover(0,false)">

<area shape="rect" alt="Button 2" coords=

"3,41,93,71" href="javascript: alert('button2’)"
onmouseover="rollover(1,true)"
onmouseout="rollover(1,false)">

<area shape="rect" alt="Button 3" coords=

c
o
4
o
;
<
>
73
o
2
3

"3,80,93,110" href="javascript: alert('button3)"
onmouseover="rollover(2,true)"
onmouseout="rollover(2,false)">

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:46 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15
550 JavaScript: The Complete Reference

<area shape="rect" alt="Button 4" coords=
"3,121,93,151" href="javascript

alert('button4")" onmouseover="rollover(3,true)"
onmouseout="rollover(3,false)">

</map>

</body>

</html>

Adapting this code for your site should be relatively easy. First, make the two
images. Then set up the image map. Next, add the positioning using the <div> tags
and the style properties provided. If you view the page at this point, you should see
only the off state image showing. Now add in the JavaScript. The only change would
be setting the various clipping regions which is this part of the code:

cliparray[0] = new clipRegion(3,3,93,33);
cliparray[1] = new clipRegion(3,41,93,71);
cliparray[2] = new clipRegion(3,80,93,110);
cliparray[3] = new clipRegion(3,121,93,151);

Just change the coordinates on the right to match your image map coordinates and
add more cliparrayl ] entries. Now in the image map, just change the various <area>
elements to have

I onmouseover="rollover(3,true)" onmouseout="rollover(3,false)"

and you should be in business. The only downside to this script is that it works only in
4 x-generation and better browsers. It also has problems in Opera. However, as written
it will degrade gracefully in older browsers, you just won't see the rollover effect.

Targeted Rollovers (Take 2)

We saw earlier in the chapter how a rollover effect might reveal a region on the
screen containing a text description. This form of targeted rollover, often called a
dynamic scope note, can be implemented without CSS by using images, but with the
DOM- and CSS-positioned items we may have a much more elegant solution. As an
example, look at the code for simple scope notes presented here.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>CSS Rollover Message</title>

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:47 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 551

<style>

<I--

#buttons {position: absolute;
top: 10px;
background-color: yellow;
width: 20%;}

#description {position: absolute;

top: 10px;
left: 40%;}
>
</style>
<script src="layerlib.js" language="JavaScriptl.2"></script>
</head>
<body>

<div id="buttons">

<a href="about.htm"
onmouseover="setContents('description’, '‘Discover the
history and management behind the DemoCompany.');"
onmouseout="setContents('description’, '&nbsp;")">About</a>

<br><br>

<a href="products.htm"
onmouseover="setContents(‘description’,
'If you like our domes, you\'ll love our robots!");"
onmouseout="setContents('description’, '&nbsp;")">Products</a>
</div>

<div id="description">&nbsp;</div>

c
&
=z
o
;
<
>
73
o
2
3

</body>
</html>

You can even go beyond this effect by using CSS-based rollovers to make entire
buttons out of CSS properties and modify the look. The point here is simply to
demonstrate the direction you can take with rollovers.

I Without the non-breaking space (&nbsp;), you may find that the description layer will
collapse under HTML and thus not instantiate the required object for manipulation

via JavaScript.

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:47 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

552 JavaScript: The Complete Reference

General Animation

The last example in this chapter presents some very simple animation using JavaScript.
In this example we will move an object up and down to particular coordinates as well
as left to right. The basic idea will be to figure out the current position of an object

and then move the object incrementally around the screen using the setX() and

setY() functions in our layer library. First we add simple getX(layerName) and
getY(layerName) functions that return the coordinates of the layer passed. These
routines are shown here.

[* return the X-coordinate of the layer named layerName */
function getX(layerName)

{
var theLayer = getElement(layerName);
if (layerobject)
return(parselnt(theLayer.left));
else
return(parselnt(theLayer.style.left));
}

/* return the y-coordinate of layer named layerName */
function getY(layerName)

{

var theLayer = getElement(layerName);

if (layerobject)
return(parselnt(theLayer.top));

else
return(parselnt(theLayer.style.top));

Next we need to define some variables to indicate how many pixels to move at a
time (step) and how quickly to run animation frames (framespeed).

[* set animation speed and step */
var step = 3;
var framespeed = 35;

We should also define some boundaries for our animation so that it doesn’t crash
into our form controls.

/* set animation boundaries */
var maxtop = 100;

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:47 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 553

var maxleft = 100;
var maxbottom = 400;
var maxright = 600;

Next we’ll add routines to move the object in the appropriate direction until it
reaches the boundary. The basic idea will be to probe the current coordinate of the
object, and if it isn’t yet at the boundary, move it a bit closer by either adding or
subtracting the value of step and then set a timer to fire in a few milliseconds to
continue the movement. The function right() is an example of this. In this case, it
moves a region called ‘ufo’ until the right boundary defined by maxright is reached.

function right()

{
currentX = getX('ufo’);

if (currentX < maxright)
{
currentX+=step;
setX(‘ufo',currentX);
move=setTimeout("right()",(1000/framespeed))
}

else
clearTimeout(move);

The complete script is shown here with a rendering in Figure 15-7.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0org/TR/html4/loose.dtd">

<html|>

<head>

<title>UFOl!</title>

<script language="JavaScript1.2" src="layerlib.js"></script>

<script language="JavaScriptl.2" type="text/javascript">
<l--

c
&
=z
o
;
<
>
73
o
2
3

[* return the X-coordinate of the layer named layerName */
function getX(layerName)
{
var theLayer = getElement(layerName);
if (layerobject)
return(parselnt(theLayer.left));

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:47 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

554 JavaScript: The Complete Reference

else
return(parselnt(theLayer.style.left));

}

[* return the y-coordinate of layer named layerName */
function getY (layerName)

{
var theLayer = getElement(layerName);
if (layerobject)
return(parselnt(theLayer.top));
else
return(parselnt(theLayer.style.top));
}

/* set animation speed and step */
var step = 3;
var framespeed = 35;

/* set animation boundaries */
var maxtop = 100;

var maxleft = 100;

var maxbottom = 400;

var maxright = 600;

/* move up until boundary */
function up()
{
var currentY = getY(‘ufo’);
if (currentY > maxtop)
{
currentY-=step;
setY(‘ufo',currentY);
move=setTimeout("up()",(1000/framespeed));
}
else
clearTimeout(move);

/* move down until boundary */
function down()

{

var currentY = getY(‘ufo’);

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:47 PM



Col or profile: Generic CWK printer profile i X
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 555

if (currentY < maxbottom)
{
currentY+=step;
setY(‘ufo',currentY);
move=setTimeout("down()",(1000/framespeed));
}
else
clearTimeout(move);

}

/* move left until boundary */
function left()

{

var currentX = getX('ufo");

if (currentX > maxleft)
{
currentX-=step;
setX(‘ufo',currentX);
move=setTimeout("left()",(1000/framespeed));
}
else
clearTimeout(move);

}

/* move right until boundary */
function right()
{
var currentX = getX(‘ufo’);
if (currentX < maxright)
{
currentX+=step;
setX(‘ufo',currentX);
move=setTimeout("right()",(1000/framespeed));
}
else
clearTimeout(move);

c
e
=z
o
5
<
>
73
o
2
3

}
1-->

</script>
</head>
<body background="space_tile.gif">

<div id="ufo" style="position:absolute; left:200px;

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:47 PM



Col or profile: Generic CWK printer profile i X
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

556 JavaScript: The Complete Reference

top:200px; width:241px; height:178px; z-index:1">
<img src="space_ufo.gif"* width="148" height="141">
</div>

<form>
<input type="button" value="up" onclick="up()">
<input type="button" value="down" onclick="down()">
<input type="button" value="left" onclick="left()">
<input type="button" value="right" onclick="right()">
<input type="button" value="stop" onclick="clearTimeout(move)">
</form>
</body>
</html>

<=8 UFO! - Microsoft Internet Explorer
| File  Ed

J & Back ~ = - @ @ 74 | @Search (3] Favorites

Favortes  Tool:  Help

iew

£# History | By S - 5 @

|@ Done ’_ ’_ |@. My Computer v

Figure 15-7. A JavaScript UFO in flight

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:48 PM



Col or profile: Generic CWK printer profile i i
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 15

Chapter 15: Image Effects: Rollovers, Positioning, and Animation 557

We could modify the animation example to move arbitrary regions as well as to
move along a path. Yet the question is: should we?

Practical DHTML

Practically speaking, many of the effects presented in this chapter should be used with
caution. First off, there are many JavaScript bugs associated with positioning objects
and manipulating their clipping regions. Careful testing and defensive coding practices
(as discussed in Chapter 24) would need to be applied. Second, many of these effects
can be created in technologies other than JavaScript. For example, a simple rollover can
be created with the CSS :hover pseudo-class for the <a> tag. As a demonstration, try
adding a style rule such as this to your page,

<style type="text/css">
<l--
a:hover {background-color: yellow; font-weight: bold;}
>
</style>

and you'll see that at least text rollovers require no programming.

Animations raise similar considerations. While you can perform them using
JavaScript, you may find that the animations flash or move jerkily. Without significantly
complex programming, you won’t have perfect animations under JavaScript. However,
by using Flash or even simple animated GIFs, you can achieve some very interesting
effects—often with far less complexity. If you want to use JavaScript, there are many
interesting effects that can be achieved. A few examples are presented at the support
site at www.javascriptref.com as well as at the numerous JavaScript library sites online,
such as DynamicDrive (www.dynamicdrive.com).

___ | Summary

This chapter presented some common applications of the Image object as well as other
visual effects commonly associated with JavaScript. We saw that while many of these
effects are relatively easy to accomplish, the scripting and style sheet variations among
the browsers require defensive programming techniques to prevent errors from being
thrown in browsers that do not support the required technology. DHTML effects, such
as animations, visibility, and movement, demonstrated the high degree of effort required
to make cross-browser—compliant code. While all the effects demonstrated in this chapter
are relatively simple, developers should not necessarily add them to their site. The
glitz provided by such scripts is interesting, but there may be little value to the effects
beyond eye candy. The next chapter demonstrates how we can take many of the ideas
demonstrated in this chapter and adapt them to powerful navigation systems for the
purpose of improving a user’s site experience.

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:48 PM



Col or profile: Generic CWK printer profile ) )
Conposite Default screen Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9

Blind Folio 558

P:\ 010Conp\ ConpRef 8\ 127- 9\ ch15. vp
Wednesday, August 29, 2001 12:08:48 PM



